Sediment phosphorus speciation and mobility under dynamic redox conditions

Christopher T. Parsons, Fereidoun Rezanezhad, David O’Connell, Philippe Van Cappellen


Abstract
Abstract. Anthropogenic nutrient enrichment has caused phosphorus (P) accumulation in many freshwater sediments, raising concerns that internal loading from legacy P may delay the recovery of aquatic ecosystems suffering from eutrophication. Benthic recycling of P strongly depends on the redox regime within surficial sediment. In many shallow environments, redox conditions tend to be highly dynamic as a result of, among others, bioturbation by macrofauna, root activity, sediment resuspension and seasonal variations in bottom-water oxygen (O2) concentrations. To gain insight into the mobility and biogeochemistry of P under fluctuating redox conditions, a suspension of sediment from a hypereutrophic freshwater marsh was exposed to alternating 7-day periods of purging with air and nitrogen gas (N2), for a total duration of 74 days, in a bioreactor system. We present comprehensive data time series of bulk aqueous- and solid-phase chemistry, solid-phase phosphorus speciation and hydrolytic enzyme activities demonstrating the mass balanced redistribution of P in sediment during redox cycling. Aqueous phosphate concentrations remained low ( ∼ 2.5 µM) under oxic conditions due to sorption to iron(III) oxyhydroxides. During anoxic periods, once nitrate was depleted, the reductive dissolution of iron(III) oxyhydroxides released P. However, only 4.5 % of the released P accumulated in solution while the rest was redistributed between the MgCl2 and NaHCO3 extractable fractions of the solid phase. Thus, under the short redox fluctuations imposed in the experiments, P remobilization to the aqueous phase remained relatively limited. Orthophosphate predominated at all times during the experiment in both the solid and aqueous phase. Combined P monoesters and diesters accounted for between 9 and 16 % of sediment particulate P. Phosphatase activities up to 2.4 mmol h−1 kg−1 indicated the potential for rapid mineralization of organic P (Po), in particular during periods of aeration when the activity of phosphomonoesterases was 37 % higher than under N2 sparging. The results emphasize that the magnitude and timing of internal P loading during periods of anoxia are dependent on both P redistribution within sediments and bottom-water nitrate concentrations.
Cite:
Christopher T. Parsons, Fereidoun Rezanezhad, David O’Connell, and Philippe Van Cappellen. 2017. Sediment phosphorus speciation and mobility under dynamic redox conditions. Biogeosciences, Volume 14, Issue 14, 14(14):3585–3602.
Copy Citation: