Contributions of Geophysical and C-Band SAR Data for Estimation of Field Scale Soil Moisture
Aaron Berg, Mitchell Krafczek, Daniel Clewley, J. Whitcomb, Ruzbeh Akbar, Mahta Moghaddam, Heather McNarin
Abstract
In this study we evaluate a Random Forest (RF) model for characterizing the spatial variability of soil moisture based on model derived from in situ soil moisture samples, geophysical data and RADAR observations. The RF model is run with and without C-band SAR backscatter to understand the importance of the inclusion of SAR data for mapping of soil moisture at field scale. The inclusion of SAR data in the RF resulted in a modest improvement however the geophysical parameters (e.g. soil types and terrain properties) were of greater importance.- Cite:
- Aaron Berg, Mitchell Krafczek, Daniel Clewley, J. Whitcomb, Ruzbeh Akbar, Mahta Moghaddam, and Heather McNarin. 2018. Contributions of Geophysical and C-Band SAR Data for Estimation of Field Scale Soil Moisture. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium.
- Copy Citation:
Export citation
@article{Berg-2018-Contributions, title = "Contributions of Geophysical and C-Band SAR Data for Estimation of Field Scale Soil Moisture", author = "Berg, Aaron and Krafczek, Mitchell and Clewley, Daniel and Whitcomb, J. and Akbar, Ruzbeh and Moghaddam, Mahta and McNarin, Heather", journal = "IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium", year = "2018", publisher = "IEEE", url = "https://gwf-uwaterloo.github.io/gwf-publications/G18-15001", doi = "10.1109/igarss.2018.8517551", abstract = "In this study we evaluate a Random Forest (RF) model for characterizing the spatial variability of soil moisture based on model derived from in situ soil moisture samples, geophysical data and RADAR observations. The RF model is run with and without C-band SAR backscatter to understand the importance of the inclusion of SAR data for mapping of soil moisture at field scale. The inclusion of SAR data in the RF resulted in a modest improvement however the geophysical parameters (e.g. soil types and terrain properties) were of greater importance.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="Berg-2018-Contributions"> <titleInfo> <title>Contributions of Geophysical and C-Band SAR Data for Estimation of Field Scale Soil Moisture</title> </titleInfo> <name type="personal"> <namePart type="given">Aaron</namePart> <namePart type="family">Berg</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mitchell</namePart> <namePart type="family">Krafczek</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Daniel</namePart> <namePart type="family">Clewley</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">J</namePart> <namePart type="family">Whitcomb</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ruzbeh</namePart> <namePart type="family">Akbar</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mahta</namePart> <namePart type="family">Moghaddam</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Heather</namePart> <namePart type="family">McNarin</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2018</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <genre authority="bibutilsgt">journal article</genre> <relatedItem type="host"> <titleInfo> <title>IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium</title> </titleInfo> <originInfo> <issuance>continuing</issuance> <publisher>IEEE</publisher> </originInfo> <genre authority="marcgt">periodical</genre> <genre authority="bibutilsgt">academic journal</genre> </relatedItem> <abstract>In this study we evaluate a Random Forest (RF) model for characterizing the spatial variability of soil moisture based on model derived from in situ soil moisture samples, geophysical data and RADAR observations. The RF model is run with and without C-band SAR backscatter to understand the importance of the inclusion of SAR data for mapping of soil moisture at field scale. The inclusion of SAR data in the RF resulted in a modest improvement however the geophysical parameters (e.g. soil types and terrain properties) were of greater importance.</abstract> <identifier type="citekey">Berg-2018-Contributions</identifier> <identifier type="doi">10.1109/igarss.2018.8517551</identifier> <location> <url>https://gwf-uwaterloo.github.io/gwf-publications/G18-15001</url> </location> <part> <date>2018</date> </part> </mods> </modsCollection>
%0 Journal Article %T Contributions of Geophysical and C-Band SAR Data for Estimation of Field Scale Soil Moisture %A Berg, Aaron %A Krafczek, Mitchell %A Clewley, Daniel %A Whitcomb, J. %A Akbar, Ruzbeh %A Moghaddam, Mahta %A McNarin, Heather %J IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium %D 2018 %I IEEE %F Berg-2018-Contributions %X In this study we evaluate a Random Forest (RF) model for characterizing the spatial variability of soil moisture based on model derived from in situ soil moisture samples, geophysical data and RADAR observations. The RF model is run with and without C-band SAR backscatter to understand the importance of the inclusion of SAR data for mapping of soil moisture at field scale. The inclusion of SAR data in the RF resulted in a modest improvement however the geophysical parameters (e.g. soil types and terrain properties) were of greater importance. %R 10.1109/igarss.2018.8517551 %U https://gwf-uwaterloo.github.io/gwf-publications/G18-15001 %U https://doi.org/10.1109/igarss.2018.8517551
Markdown (Informal)
[Contributions of Geophysical and C-Band SAR Data for Estimation of Field Scale Soil Moisture](https://gwf-uwaterloo.github.io/gwf-publications/G18-15001) (Berg et al., GWF 2018)
- Contributions of Geophysical and C-Band SAR Data for Estimation of Field Scale Soil Moisture (Berg et al., GWF 2018)
ACL
- Aaron Berg, Mitchell Krafczek, Daniel Clewley, J. Whitcomb, Ruzbeh Akbar, Mahta Moghaddam, and Heather McNarin. 2018. Contributions of Geophysical and C-Band SAR Data for Estimation of Field Scale Soil Moisture. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium.