@article{King-2018-The,
title = "The influence of snow microstructure on dual-frequency radar measurements in a tundra environment",
author = "King, Joshua and
Derksen, Chris and
Toose, Peter and
Langlois, Alexandre and
Larsen, C. F. and
Lemmetyinen, Juha and
Marsh, P. and
Montpetit, Beno{\^\i}t and
Roy, Alexandre and
Rutter, Nick and
Sturm, Matthew",
journal = "Remote Sensing of Environment, Volume 215",
volume = "215",
year = "2018",
publisher = "Elsevier BV",
url = "https://gwf-uwaterloo.github.io/gwf-publications/G18-60001",
doi = "10.1016/j.rse.2018.05.028",
pages = "242--254",
abstract = "Abstract Recent advancement in the understanding of snow-microwave interactions has helped to isolate the considerable potential for radar-based retrieval of snow water equivalent (SWE). There are however, few datasets available to address spatial uncertainties, such as the influence of snow microstructure, at scales relevant to space-borne application. In this study we introduce measurements from SnowSAR, an airborne, dual-frequency (9.6 and 17.2 GHz) synthetic aperture radar (SAR), to evaluate high resolution (10 m) backscatter within a snow-covered tundra basin. Coincident in situ surveys at two sites characterize a generally thin snowpack (50 cm) interspersed with deeper drift features. Structure of the snowpack is found to be predominantly wind slab (65{\%}) with smaller proportions of depth hoar underlain (35{\%}). Objective estimates of snow microstructure (exponential correlation length; lex), show the slab layers to be 2.8 times smaller than the basal depth hoar. In situ measurements are used to parametrize the Microwave Emission Model of Layered Snowpacks (MEMLS3{\&}a) and compare against collocated SnowSAR backscatter. The evaluation shows a scaling factor (ϕ) between 1.37 and 1.08, when applied to input of lex, minimizes MEMLS root mean squared error to",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="King-2018-The">
<titleInfo>
<title>The influence of snow microstructure on dual-frequency radar measurements in a tundra environment</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joshua</namePart>
<namePart type="family">King</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Derksen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Toose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandre</namePart>
<namePart type="family">Langlois</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="given">F</namePart>
<namePart type="family">Larsen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juha</namePart>
<namePart type="family">Lemmetyinen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Marsh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benoît</namePart>
<namePart type="family">Montpetit</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandre</namePart>
<namePart type="family">Roy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nick</namePart>
<namePart type="family">Rutter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Sturm</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Remote Sensing of Environment, Volume 215</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>Elsevier BV</publisher>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>Abstract Recent advancement in the understanding of snow-microwave interactions has helped to isolate the considerable potential for radar-based retrieval of snow water equivalent (SWE). There are however, few datasets available to address spatial uncertainties, such as the influence of snow microstructure, at scales relevant to space-borne application. In this study we introduce measurements from SnowSAR, an airborne, dual-frequency (9.6 and 17.2 GHz) synthetic aperture radar (SAR), to evaluate high resolution (10 m) backscatter within a snow-covered tundra basin. Coincident in situ surveys at two sites characterize a generally thin snowpack (50 cm) interspersed with deeper drift features. Structure of the snowpack is found to be predominantly wind slab (65%) with smaller proportions of depth hoar underlain (35%). Objective estimates of snow microstructure (exponential correlation length; lex), show the slab layers to be 2.8 times smaller than the basal depth hoar. In situ measurements are used to parametrize the Microwave Emission Model of Layered Snowpacks (MEMLS3&a) and compare against collocated SnowSAR backscatter. The evaluation shows a scaling factor (ϕ) between 1.37 and 1.08, when applied to input of lex, minimizes MEMLS root mean squared error to</abstract>
<identifier type="citekey">King-2018-The</identifier>
<identifier type="doi">10.1016/j.rse.2018.05.028</identifier>
<location>
<url>https://gwf-uwaterloo.github.io/gwf-publications/G18-60001</url>
</location>
<part>
<date>2018</date>
<detail type="volume"><number>215</number></detail>
<extent unit="page">
<start>242</start>
<end>254</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T The influence of snow microstructure on dual-frequency radar measurements in a tundra environment
%A King, Joshua
%A Derksen, Chris
%A Toose, Peter
%A Langlois, Alexandre
%A Larsen, C. F.
%A Lemmetyinen, Juha
%A Marsh, P.
%A Montpetit, Benoît
%A Roy, Alexandre
%A Rutter, Nick
%A Sturm, Matthew
%J Remote Sensing of Environment, Volume 215
%D 2018
%V 215
%I Elsevier BV
%F King-2018-The
%X Abstract Recent advancement in the understanding of snow-microwave interactions has helped to isolate the considerable potential for radar-based retrieval of snow water equivalent (SWE). There are however, few datasets available to address spatial uncertainties, such as the influence of snow microstructure, at scales relevant to space-borne application. In this study we introduce measurements from SnowSAR, an airborne, dual-frequency (9.6 and 17.2 GHz) synthetic aperture radar (SAR), to evaluate high resolution (10 m) backscatter within a snow-covered tundra basin. Coincident in situ surveys at two sites characterize a generally thin snowpack (50 cm) interspersed with deeper drift features. Structure of the snowpack is found to be predominantly wind slab (65%) with smaller proportions of depth hoar underlain (35%). Objective estimates of snow microstructure (exponential correlation length; lex), show the slab layers to be 2.8 times smaller than the basal depth hoar. In situ measurements are used to parametrize the Microwave Emission Model of Layered Snowpacks (MEMLS3&a) and compare against collocated SnowSAR backscatter. The evaluation shows a scaling factor (ϕ) between 1.37 and 1.08, when applied to input of lex, minimizes MEMLS root mean squared error to
%R 10.1016/j.rse.2018.05.028
%U https://gwf-uwaterloo.github.io/gwf-publications/G18-60001
%U https://doi.org/10.1016/j.rse.2018.05.028
%P 242-254
Markdown (Informal)
[The influence of snow microstructure on dual-frequency radar measurements in a tundra environment](https://gwf-uwaterloo.github.io/gwf-publications/G18-60001) (King et al., GWF 2018)
ACL
- Joshua King, Chris Derksen, Peter Toose, Alexandre Langlois, C. F. Larsen, Juha Lemmetyinen, P. Marsh, Benoît Montpetit, Alexandre Roy, Nick Rutter, and Matthew Sturm. 2018. The influence of snow microstructure on dual-frequency radar measurements in a tundra environment. Remote Sensing of Environment, Volume 215, 215:242–254.