@article{Leonard-2018-Disturbance,
title = "Disturbance Impacts on Thermal Hot Spots and Hot Moments at the Peatland-Atmosphere Interface",
author = "Leonard, Rhoswen and
Kettridge, Nicholas and
Devito, K. J. and
Petrone, Richard M. and
Mendoza, Carl and
Waddington, J. M. and
Krause, Stefan",
journal = "Geophysical Research Letters, Volume 45, Issue 1",
volume = "45",
number = "1",
year = "2018",
publisher = "American Geophysical Union (AGU)",
url = "https://gwf-uwaterloo.github.io/gwf-publications/G18-65001",
doi = "10.1002/2017gl075974",
pages = "185--193",
abstract = "Soil‐surface temperature acts as a master variable driving nonlinear terrestrial ecohydrological, biogeochemical, and micrometeorological processes, inducing short‐lived or spatially isolated extremes across heterogeneous landscape surfaces. However, subcanopy soil‐surface temperatures have been, to date, characterized through isolated, spatially discrete measurements. Using spatially complex forested northern peatlands as an exemplar ecosystem, we explore the high‐resolution spatiotemporal thermal behavior of this critical interface and its response to disturbances by using Fiber‐Optic Distributed Temperature Sensing. Soil‐surface thermal patterning was identified from 1.9 million temperature measurements under undisturbed, trees removed and vascular subcanopy removed conditions. Removing layers of the structurally diverse vegetation canopy not only increased mean temperatures but it shifted the spatial and temporal distribution, range, and longevity of thermal hot spots and hot moments. We argue that linking hot spots and/or hot moments with spatially variable ecosystem processes and feedbacks is key for predicting ecosystem function and resilience.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="Leonard-2018-Disturbance">
<titleInfo>
<title>Disturbance Impacts on Thermal Hot Spots and Hot Moments at the Peatland-Atmosphere Interface</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rhoswen</namePart>
<namePart type="family">Leonard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nicholas</namePart>
<namePart type="family">Kettridge</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="given">J</namePart>
<namePart type="family">Devito</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Richard</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Petrone</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carl</namePart>
<namePart type="family">Mendoza</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Waddington</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefan</namePart>
<namePart type="family">Krause</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Geophysical Research Letters, Volume 45, Issue 1</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>American Geophysical Union (AGU)</publisher>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>Soil‐surface temperature acts as a master variable driving nonlinear terrestrial ecohydrological, biogeochemical, and micrometeorological processes, inducing short‐lived or spatially isolated extremes across heterogeneous landscape surfaces. However, subcanopy soil‐surface temperatures have been, to date, characterized through isolated, spatially discrete measurements. Using spatially complex forested northern peatlands as an exemplar ecosystem, we explore the high‐resolution spatiotemporal thermal behavior of this critical interface and its response to disturbances by using Fiber‐Optic Distributed Temperature Sensing. Soil‐surface thermal patterning was identified from 1.9 million temperature measurements under undisturbed, trees removed and vascular subcanopy removed conditions. Removing layers of the structurally diverse vegetation canopy not only increased mean temperatures but it shifted the spatial and temporal distribution, range, and longevity of thermal hot spots and hot moments. We argue that linking hot spots and/or hot moments with spatially variable ecosystem processes and feedbacks is key for predicting ecosystem function and resilience.</abstract>
<identifier type="citekey">Leonard-2018-Disturbance</identifier>
<identifier type="doi">10.1002/2017gl075974</identifier>
<location>
<url>https://gwf-uwaterloo.github.io/gwf-publications/G18-65001</url>
</location>
<part>
<date>2018</date>
<detail type="volume"><number>45</number></detail>
<detail type="issue"><number>1</number></detail>
<extent unit="page">
<start>185</start>
<end>193</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Disturbance Impacts on Thermal Hot Spots and Hot Moments at the Peatland-Atmosphere Interface
%A Leonard, Rhoswen
%A Kettridge, Nicholas
%A Devito, K. J.
%A Petrone, Richard M.
%A Mendoza, Carl
%A Waddington, J. M.
%A Krause, Stefan
%J Geophysical Research Letters, Volume 45, Issue 1
%D 2018
%V 45
%N 1
%I American Geophysical Union (AGU)
%F Leonard-2018-Disturbance
%X Soil‐surface temperature acts as a master variable driving nonlinear terrestrial ecohydrological, biogeochemical, and micrometeorological processes, inducing short‐lived or spatially isolated extremes across heterogeneous landscape surfaces. However, subcanopy soil‐surface temperatures have been, to date, characterized through isolated, spatially discrete measurements. Using spatially complex forested northern peatlands as an exemplar ecosystem, we explore the high‐resolution spatiotemporal thermal behavior of this critical interface and its response to disturbances by using Fiber‐Optic Distributed Temperature Sensing. Soil‐surface thermal patterning was identified from 1.9 million temperature measurements under undisturbed, trees removed and vascular subcanopy removed conditions. Removing layers of the structurally diverse vegetation canopy not only increased mean temperatures but it shifted the spatial and temporal distribution, range, and longevity of thermal hot spots and hot moments. We argue that linking hot spots and/or hot moments with spatially variable ecosystem processes and feedbacks is key for predicting ecosystem function and resilience.
%R 10.1002/2017gl075974
%U https://gwf-uwaterloo.github.io/gwf-publications/G18-65001
%U https://doi.org/10.1002/2017gl075974
%P 185-193
Markdown (Informal)
[Disturbance Impacts on Thermal Hot Spots and Hot Moments at the Peatland-Atmosphere Interface](https://gwf-uwaterloo.github.io/gwf-publications/G18-65001) (Leonard et al., GWF 2018)
ACL
- Rhoswen Leonard, Nicholas Kettridge, K. J. Devito, Richard M. Petrone, Carl Mendoza, J. M. Waddington, and Stefan Krause. 2018. Disturbance Impacts on Thermal Hot Spots and Hot Moments at the Peatland-Atmosphere Interface. Geophysical Research Letters, Volume 45, Issue 1, 45(1):185–193.