@article{Rasouli-2019-Hydrological,
title = "Hydrological Responses of Headwater Basins to Monthly Perturbed Climate in the North American Cordillera",
author = "Rasouli, Kabir and
Pomeroy, John W. and
Whitfield, Paul H.",
journal = "Journal of Hydrometeorology, Volume 20, Issue 5",
volume = "20",
number = "5",
year = "2019",
publisher = "American Meteorological Society",
url = "https://gwf-uwaterloo.github.io/gwf-publications/G19-145001",
doi = "10.1175/jhm-d-18-0166.1",
pages = "863--882",
abstract = "Abstract How mountain hydrology at different elevations will respond to climate change is a challenging question of great importance to assessing changing water resources. Here, three North American Cordilleran snow-dominated basins{---}Wolf Creek, Yukon; Marmot Creek, Alberta; and Reynolds Mountain East, Idaho{---}each with good meteorological and hydrological records, were modeled using the physically based, spatially distributed Cold Regions Hydrological Model. Model performance was verified using field observations and found adequate for diagnostic analysis. To diagnose the effects of future climate, the monthly temperature and precipitation changes projected for the future by 11 regional climate models for the mid-twenty-first century were added to the observed meteorological time series. The modeled future was warmer and wetter, increasing the rainfall fraction of precipitation and shifting all three basins toward rainfall{--}runoff hydrology. This shift was largest at lower elevations and in the relatively warmer Reynolds Mountain East. In the warmer future, there was decreased blowing snow transport, snow interception and sublimation, peak snow accumulation, and melt rates, and increased evapotranspiration and the duration of the snow-free season. Annual runoff in these basins did not change despite precipitation increases, warming, and an increased prominence of rainfall over snowfall. Reduced snow sublimation offset reduced snowfall amounts, and increased evapotranspiration offset increased rainfall amounts. The hydrological uncertainty due to variation among climate models was greater than the predicted hydrological changes. While the results of this study can be used to assess the vulnerability and resiliency of water resources that are dependent on mountain snow, stakeholders and water managers must make decisions under considerable uncertainty, which this paper illustrates.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="Rasouli-2019-Hydrological">
<titleInfo>
<title>Hydrological Responses of Headwater Basins to Monthly Perturbed Climate in the North American Cordillera</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kabir</namePart>
<namePart type="family">Rasouli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="given">W</namePart>
<namePart type="family">Pomeroy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="given">H</namePart>
<namePart type="family">Whitfield</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Journal of Hydrometeorology, Volume 20, Issue 5</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>American Meteorological Society</publisher>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>Abstract How mountain hydrology at different elevations will respond to climate change is a challenging question of great importance to assessing changing water resources. Here, three North American Cordilleran snow-dominated basins—Wolf Creek, Yukon; Marmot Creek, Alberta; and Reynolds Mountain East, Idaho—each with good meteorological and hydrological records, were modeled using the physically based, spatially distributed Cold Regions Hydrological Model. Model performance was verified using field observations and found adequate for diagnostic analysis. To diagnose the effects of future climate, the monthly temperature and precipitation changes projected for the future by 11 regional climate models for the mid-twenty-first century were added to the observed meteorological time series. The modeled future was warmer and wetter, increasing the rainfall fraction of precipitation and shifting all three basins toward rainfall–runoff hydrology. This shift was largest at lower elevations and in the relatively warmer Reynolds Mountain East. In the warmer future, there was decreased blowing snow transport, snow interception and sublimation, peak snow accumulation, and melt rates, and increased evapotranspiration and the duration of the snow-free season. Annual runoff in these basins did not change despite precipitation increases, warming, and an increased prominence of rainfall over snowfall. Reduced snow sublimation offset reduced snowfall amounts, and increased evapotranspiration offset increased rainfall amounts. The hydrological uncertainty due to variation among climate models was greater than the predicted hydrological changes. While the results of this study can be used to assess the vulnerability and resiliency of water resources that are dependent on mountain snow, stakeholders and water managers must make decisions under considerable uncertainty, which this paper illustrates.</abstract>
<identifier type="citekey">Rasouli-2019-Hydrological</identifier>
<identifier type="doi">10.1175/jhm-d-18-0166.1</identifier>
<location>
<url>https://gwf-uwaterloo.github.io/gwf-publications/G19-145001</url>
</location>
<part>
<date>2019</date>
<detail type="volume"><number>20</number></detail>
<detail type="issue"><number>5</number></detail>
<extent unit="page">
<start>863</start>
<end>882</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Hydrological Responses of Headwater Basins to Monthly Perturbed Climate in the North American Cordillera
%A Rasouli, Kabir
%A Pomeroy, John W.
%A Whitfield, Paul H.
%J Journal of Hydrometeorology, Volume 20, Issue 5
%D 2019
%V 20
%N 5
%I American Meteorological Society
%F Rasouli-2019-Hydrological
%X Abstract How mountain hydrology at different elevations will respond to climate change is a challenging question of great importance to assessing changing water resources. Here, three North American Cordilleran snow-dominated basins—Wolf Creek, Yukon; Marmot Creek, Alberta; and Reynolds Mountain East, Idaho—each with good meteorological and hydrological records, were modeled using the physically based, spatially distributed Cold Regions Hydrological Model. Model performance was verified using field observations and found adequate for diagnostic analysis. To diagnose the effects of future climate, the monthly temperature and precipitation changes projected for the future by 11 regional climate models for the mid-twenty-first century were added to the observed meteorological time series. The modeled future was warmer and wetter, increasing the rainfall fraction of precipitation and shifting all three basins toward rainfall–runoff hydrology. This shift was largest at lower elevations and in the relatively warmer Reynolds Mountain East. In the warmer future, there was decreased blowing snow transport, snow interception and sublimation, peak snow accumulation, and melt rates, and increased evapotranspiration and the duration of the snow-free season. Annual runoff in these basins did not change despite precipitation increases, warming, and an increased prominence of rainfall over snowfall. Reduced snow sublimation offset reduced snowfall amounts, and increased evapotranspiration offset increased rainfall amounts. The hydrological uncertainty due to variation among climate models was greater than the predicted hydrological changes. While the results of this study can be used to assess the vulnerability and resiliency of water resources that are dependent on mountain snow, stakeholders and water managers must make decisions under considerable uncertainty, which this paper illustrates.
%R 10.1175/jhm-d-18-0166.1
%U https://gwf-uwaterloo.github.io/gwf-publications/G19-145001
%U https://doi.org/10.1175/jhm-d-18-0166.1
%P 863-882
Markdown (Informal)
[Hydrological Responses of Headwater Basins to Monthly Perturbed Climate in the North American Cordillera](https://gwf-uwaterloo.github.io/gwf-publications/G19-145001) (Rasouli et al., GWF 2019)
ACL
- Kabir Rasouli, John W. Pomeroy, and Paul H. Whitfield. 2019. Hydrological Responses of Headwater Basins to Monthly Perturbed Climate in the North American Cordillera. Journal of Hydrometeorology, Volume 20, Issue 5, 20(5):863–882.