Climate‐change refugia in boreal North America: what, where, and for how long?
Diana Stralberg, Dominique Arseneault, Jennifer L. Baltzer, Quinn E. Barber, Erin M. Bayne, Yan Boulanger, Clifford M. Brown, Hilary A. Cooke, K. J. Devito, Jason E. Edwards, César A. Estevo, Nadele Flynn, Lee E. Frelich, Edward H. Hogg, Mark Johnston, Travis Logan, Steven M. Matsuoka, Paul A. Moore, Toni Lyn Morelli, Jacques Morissette, Elizabeth A. Nelson, Hedvig K. Nenzén, Scott E. Nielsen, Marc André Parisien, John H. Pedlar, David T. Price, Fiona K. A. Schmiegelow, Stuart M. Slattery, Oliver Sonnentag, Daniel K. Thompson, Ellen Whitman
Abstract
H latitude regions around the world are experiencing particularly rapid climate change. These regions include the 625 million ha North American boreal region, which contains 16% of the world’s forests and plays a major role in the global carbon cycle (Brandt et al. 2013). Boreal ecosystems are particularly susceptible to rapid climatedriven vegetation change initiated by standreplacing natural disturbances (notably fires), which have increased in number, extent, and frequency (Kasischke and Turetsky 2006; Hanes et al. 2018) and are expected to continue under future climate change (Boulanger et al. 2014). Such disturbances will increasingly complicate species persistence, and it will therefore be critical to identify locations of possible climatechange refugia (areas “relatively buffered from contemporary climate change”) (Morelli et al. 2016). These “slow lanes” for biodiversity will be especially important for conservation and management of boreal species and ecosystems (Morelli et al. 2020). Practically speaking, the refugia concept can translate into specific sites or regions that are expected to be more resistant to the influence of climate change than other areas (“in situ refugia”; Ashcroft 2010). Refugia may also encompass sites or regions to which species may more readily retreat as climate conditions change (“ex situ refugia”; Ashcroft 2010; Keppel et al. 2012), as well as temporary “stepping stones” (Hannah et al. 2014) linking current and future habitats. In addition to areas that are climatically buffered, fire refugia – “places that are disturbed less frequently or less severely by wildfire” (Krawchuk et al. 2016) – may also play key roles in promoting ecosystem persistence under changing conditions (Meddens et al. 2018). Previous examinations of climatechange refugia have primarily emphasized external, terrainmediated mechanisms. Factors such as topographic shading and temperature inverClimatechange refugia in boreal North America: what, where, and for how long?- Cite:
- Diana Stralberg, Dominique Arseneault, Jennifer L. Baltzer, Quinn E. Barber, Erin M. Bayne, Yan Boulanger, Clifford M. Brown, Hilary A. Cooke, K. J. Devito, Jason E. Edwards, César A. Estevo, Nadele Flynn, Lee E. Frelich, Edward H. Hogg, Mark Johnston, Travis Logan, Steven M. Matsuoka, Paul A. Moore, Toni Lyn Morelli, et al.. 2020. Climate‐change refugia in boreal North America: what, where, and for how long?. Frontiers in Ecology and the Environment, Volume 18, Issue 5, 18(5):261–270.
- Copy Citation:
Export citation
@article{Stralberg-2020-Climate‐change, title = "Climate‐change refugia in boreal North America: what, where, and for how long?", author = "Stralberg, Diana and Arseneault, Dominique and Baltzer, Jennifer L. and Barber, Quinn E. and Bayne, Erin M. and Boulanger, Yan and Brown, Clifford M. and Cooke, Hilary A. and Devito, K. J. and Edwards, Jason E. and Estevo, C{\'e}sar A. and Flynn, Nadele and Frelich, Lee E. and Hogg, Edward H. and Johnston, Mark and Logan, Travis and Matsuoka, Steven M. and Moore, Paul A. and Morelli, Toni Lyn and Morissette, Jacques and Nelson, Elizabeth A. and Nenz{\'e}n, Hedvig K. and Nielsen, Scott E. and Parisien, Marc Andr{\'e} and Pedlar, John H. and Price, David T. and Schmiegelow, Fiona K. A. and Slattery, Stuart M. and Sonnentag, Oliver and Thompson, Daniel K. and Whitman, Ellen", journal = "Frontiers in Ecology and the Environment, Volume 18, Issue 5", volume = "18", number = "5", year = "2020", publisher = "Wiley", url = "https://gwf-uwaterloo.github.io/gwf-publications/G20-136001", doi = "10.1002/fee.2188", pages = "261--270", abstract = "H latitude regions around the world are experiencing particularly rapid climate change. These regions include the 625 million ha North American boreal region, which contains 16{\%} of the world{'}s forests and plays a major role in the global carbon cycle (Brandt et al. 2013). Boreal ecosystems are particularly susceptible to rapid climatedriven vegetation change initiated by standreplacing natural disturbances (notably fires), which have increased in number, extent, and frequency (Kasischke and Turetsky 2006; Hanes et al. 2018) and are expected to continue under future climate change (Boulanger et al. 2014). Such disturbances will increasingly complicate species persistence, and it will therefore be critical to identify locations of possible climatechange refugia (areas {``}relatively buffered from contemporary climate change{''}) (Morelli et al. 2016). These {``}slow lanes{''} for biodiversity will be especially important for conservation and management of boreal species and ecosystems (Morelli et al. 2020). Practically speaking, the refugia concept can translate into specific sites or regions that are expected to be more resistant to the influence of climate change than other areas ({``}in situ refugia{''}; Ashcroft 2010). Refugia may also encompass sites or regions to which species may more readily retreat as climate conditions change ({``}ex situ refugia{''}; Ashcroft 2010; Keppel et al. 2012), as well as temporary {``}stepping stones{''} (Hannah et al. 2014) linking current and future habitats. In addition to areas that are climatically buffered, fire refugia {--} {``}places that are disturbed less frequently or less severely by wildfire{''} (Krawchuk et al. 2016) {--} may also play key roles in promoting ecosystem persistence under changing conditions (Meddens et al. 2018). Previous examinations of climatechange refugia have primarily emphasized external, terrainmediated mechanisms. Factors such as topographic shading and temperature inverClimatechange refugia in boreal North America: what, where, and for how long?", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="Stralberg-2020-Climate‐change"> <titleInfo> <title>Climate‐change refugia in boreal North America: what, where, and for how long?</title> </titleInfo> <name type="personal"> <namePart type="given">Diana</namePart> <namePart type="family">Stralberg</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Dominique</namePart> <namePart type="family">Arseneault</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jennifer</namePart> <namePart type="given">L</namePart> <namePart type="family">Baltzer</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Quinn</namePart> <namePart type="given">E</namePart> <namePart type="family">Barber</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Erin</namePart> <namePart type="given">M</namePart> <namePart type="family">Bayne</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yan</namePart> <namePart type="family">Boulanger</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Clifford</namePart> <namePart type="given">M</namePart> <namePart type="family">Brown</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hilary</namePart> <namePart type="given">A</namePart> <namePart type="family">Cooke</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">K</namePart> <namePart type="given">J</namePart> <namePart type="family">Devito</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jason</namePart> <namePart type="given">E</namePart> <namePart type="family">Edwards</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">César</namePart> <namePart type="given">A</namePart> <namePart type="family">Estevo</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Nadele</namePart> <namePart type="family">Flynn</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Lee</namePart> <namePart type="given">E</namePart> <namePart type="family">Frelich</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Edward</namePart> <namePart type="given">H</namePart> <namePart type="family">Hogg</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mark</namePart> <namePart type="family">Johnston</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Travis</namePart> <namePart type="family">Logan</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Steven</namePart> <namePart type="given">M</namePart> <namePart type="family">Matsuoka</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Paul</namePart> <namePart type="given">A</namePart> <namePart type="family">Moore</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Toni</namePart> <namePart type="given">Lyn</namePart> <namePart type="family">Morelli</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jacques</namePart> <namePart type="family">Morissette</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Elizabeth</namePart> <namePart type="given">A</namePart> <namePart type="family">Nelson</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hedvig</namePart> <namePart type="given">K</namePart> <namePart type="family">Nenzén</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Scott</namePart> <namePart type="given">E</namePart> <namePart type="family">Nielsen</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marc</namePart> <namePart type="given">André</namePart> <namePart type="family">Parisien</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">John</namePart> <namePart type="given">H</namePart> <namePart type="family">Pedlar</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">David</namePart> <namePart type="given">T</namePart> <namePart type="family">Price</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Fiona</namePart> <namePart type="given">K</namePart> <namePart type="given">A</namePart> <namePart type="family">Schmiegelow</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Stuart</namePart> <namePart type="given">M</namePart> <namePart type="family">Slattery</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Oliver</namePart> <namePart type="family">Sonnentag</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Daniel</namePart> <namePart type="given">K</namePart> <namePart type="family">Thompson</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ellen</namePart> <namePart type="family">Whitman</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2020</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <genre authority="bibutilsgt">journal article</genre> <relatedItem type="host"> <titleInfo> <title>Frontiers in Ecology and the Environment, Volume 18, Issue 5</title> </titleInfo> <originInfo> <issuance>continuing</issuance> <publisher>Wiley</publisher> </originInfo> <genre authority="marcgt">periodical</genre> <genre authority="bibutilsgt">academic journal</genre> </relatedItem> <abstract>H latitude regions around the world are experiencing particularly rapid climate change. These regions include the 625 million ha North American boreal region, which contains 16% of the world’s forests and plays a major role in the global carbon cycle (Brandt et al. 2013). Boreal ecosystems are particularly susceptible to rapid climatedriven vegetation change initiated by standreplacing natural disturbances (notably fires), which have increased in number, extent, and frequency (Kasischke and Turetsky 2006; Hanes et al. 2018) and are expected to continue under future climate change (Boulanger et al. 2014). Such disturbances will increasingly complicate species persistence, and it will therefore be critical to identify locations of possible climatechange refugia (areas “relatively buffered from contemporary climate change”) (Morelli et al. 2016). These “slow lanes” for biodiversity will be especially important for conservation and management of boreal species and ecosystems (Morelli et al. 2020). Practically speaking, the refugia concept can translate into specific sites or regions that are expected to be more resistant to the influence of climate change than other areas (“in situ refugia”; Ashcroft 2010). Refugia may also encompass sites or regions to which species may more readily retreat as climate conditions change (“ex situ refugia”; Ashcroft 2010; Keppel et al. 2012), as well as temporary “stepping stones” (Hannah et al. 2014) linking current and future habitats. In addition to areas that are climatically buffered, fire refugia – “places that are disturbed less frequently or less severely by wildfire” (Krawchuk et al. 2016) – may also play key roles in promoting ecosystem persistence under changing conditions (Meddens et al. 2018). Previous examinations of climatechange refugia have primarily emphasized external, terrainmediated mechanisms. Factors such as topographic shading and temperature inverClimatechange refugia in boreal North America: what, where, and for how long?</abstract> <identifier type="citekey">Stralberg-2020-Climate‐change</identifier> <identifier type="doi">10.1002/fee.2188</identifier> <location> <url>https://gwf-uwaterloo.github.io/gwf-publications/G20-136001</url> </location> <part> <date>2020</date> <detail type="volume"><number>18</number></detail> <detail type="issue"><number>5</number></detail> <extent unit="page"> <start>261</start> <end>270</end> </extent> </part> </mods> </modsCollection>
%0 Journal Article %T Climate‐change refugia in boreal North America: what, where, and for how long? %A Stralberg, Diana %A Arseneault, Dominique %A Baltzer, Jennifer L. %A Barber, Quinn E. %A Bayne, Erin M. %A Boulanger, Yan %A Brown, Clifford M. %A Cooke, Hilary A. %A Devito, K. J. %A Edwards, Jason E. %A Estevo, César A. %A Flynn, Nadele %A Frelich, Lee E. %A Hogg, Edward H. %A Johnston, Mark %A Logan, Travis %A Matsuoka, Steven M. %A Moore, Paul A. %A Morelli, Toni Lyn %A Morissette, Jacques %A Nelson, Elizabeth A. %A Nenzén, Hedvig K. %A Nielsen, Scott E. %A Parisien, Marc André %A Pedlar, John H. %A Price, David T. %A Schmiegelow, Fiona K. A. %A Slattery, Stuart M. %A Sonnentag, Oliver %A Thompson, Daniel K. %A Whitman, Ellen %J Frontiers in Ecology and the Environment, Volume 18, Issue 5 %D 2020 %V 18 %N 5 %I Wiley %F Stralberg-2020-Climate‐change %X H latitude regions around the world are experiencing particularly rapid climate change. These regions include the 625 million ha North American boreal region, which contains 16% of the world’s forests and plays a major role in the global carbon cycle (Brandt et al. 2013). Boreal ecosystems are particularly susceptible to rapid climatedriven vegetation change initiated by standreplacing natural disturbances (notably fires), which have increased in number, extent, and frequency (Kasischke and Turetsky 2006; Hanes et al. 2018) and are expected to continue under future climate change (Boulanger et al. 2014). Such disturbances will increasingly complicate species persistence, and it will therefore be critical to identify locations of possible climatechange refugia (areas “relatively buffered from contemporary climate change”) (Morelli et al. 2016). These “slow lanes” for biodiversity will be especially important for conservation and management of boreal species and ecosystems (Morelli et al. 2020). Practically speaking, the refugia concept can translate into specific sites or regions that are expected to be more resistant to the influence of climate change than other areas (“in situ refugia”; Ashcroft 2010). Refugia may also encompass sites or regions to which species may more readily retreat as climate conditions change (“ex situ refugia”; Ashcroft 2010; Keppel et al. 2012), as well as temporary “stepping stones” (Hannah et al. 2014) linking current and future habitats. In addition to areas that are climatically buffered, fire refugia – “places that are disturbed less frequently or less severely by wildfire” (Krawchuk et al. 2016) – may also play key roles in promoting ecosystem persistence under changing conditions (Meddens et al. 2018). Previous examinations of climatechange refugia have primarily emphasized external, terrainmediated mechanisms. Factors such as topographic shading and temperature inverClimatechange refugia in boreal North America: what, where, and for how long? %R 10.1002/fee.2188 %U https://gwf-uwaterloo.github.io/gwf-publications/G20-136001 %U https://doi.org/10.1002/fee.2188 %P 261-270
Markdown (Informal)
[Climate‐change refugia in boreal North America: what, where, and for how long?](https://gwf-uwaterloo.github.io/gwf-publications/G20-136001) (Stralberg et al., GWF 2020)
- Climate‐change refugia in boreal North America: what, where, and for how long? (Stralberg et al., GWF 2020)
ACL
- Diana Stralberg, Dominique Arseneault, Jennifer L. Baltzer, Quinn E. Barber, Erin M. Bayne, Yan Boulanger, Clifford M. Brown, Hilary A. Cooke, K. J. Devito, Jason E. Edwards, César A. Estevo, Nadele Flynn, Lee E. Frelich, Edward H. Hogg, Mark Johnston, Travis Logan, Steven M. Matsuoka, Paul A. Moore, Toni Lyn Morelli, et al.. 2020. Climate‐change refugia in boreal North America: what, where, and for how long?. Frontiers in Ecology and the Environment, Volume 18, Issue 5, 18(5):261–270.