@article{Pitcher-2020-Advancing,
title = "Advancing Field-Based GNSS Surveying for Validation of Remotely Sensed Water Surface Elevation Products",
author = "Pitcher, L. H. and
Smith, L. C. and
Cooley, S. W. and
Zaino, Annie and
Carlson, R. L. and
Pettit, Joseph L. and
Gleason, C. J. and
Minear, J. T. and
Fayne, Jessica V. and
Willis, M. J. and
Hansen, J. S. and
Easterday, Kelly and
Harlan, M. and
Langhorst, Theodore and
Topp, S. and
Dolan, Wayana and
Kyzivat, E. D. and
Pietroniro, A. and
Marsh, Philip and
Yang, Daqing and
Carter, Thomas and
Onclin, C. and
Hosseini, Nasim and
Wilcox, Evan J. and
Moreira, Daniel Med{\'e}iros and
Berg{\'e}-Nguyen, Muriel and
Cr{\'e}taux, Jean-Fran{\c{c}}ois and
Pavelsky, T.",
journal = "Frontiers in Earth Science, Volume 8",
volume = "8",
year = "2020",
publisher = "Frontiers Media SA",
url = "https://gwf-uwaterloo.github.io/gwf-publications/G20-76001",
doi = "10.3389/feart.2020.00278",
abstract = "To advance monitoring of surface water resources, new remote sensing technologies including the forthcoming Surface Water and Ocean Topography (SWOT) satellite (expected launch 2022) and its experimental airborne prototype AirSWOT are being developed to repeatedly map water surface elevation (WSE) and slope (WSS) of the world{'}s rivers, lakes, and reservoirs. However, the vertical accuracies of these novel technologies are largely unverified; thus, standard and repeatable field procedures to validate remotely sensed WSE and WSS are needed. To that end, we designed, engineered, and operationalized a Water Surface Profiler (WaSP) system that efficiently and accurately surveys WSE and WSS in a variety of surface water environments using Global Navigation Satellite Systems (GNSS) time-averaged measurements with Precise Point Positioning corrections. Here, we present WaSP construction, deployment, and a data processing workflow. We demonstrate WaSP data collections from repeat field deployments in the North Saskatchewan River and three prairie pothole lakes near Saskatoon, Saskatchewan, Canada. We find that WaSP reproducibly measures WSE and WSS with vertical accuracies similar to standard field survey methods [WSE root mean squared difference (RMSD) ∼8 cm, WSS RMSD ∼1.3 cm/km] and that repeat WaSP deployments accurately quantify water level changes (RMSD ∼3 cm). Collectively, these results suggest that WaSP is an easily deployed, self-contained system with sufficient accuracy for validating the decimeter-level expected accuracies of SWOT and AirSWOT. We conclude by discussing the utility of WaSP for validating airborne and spaceborne WSE mappings, present 63 WaSP in situ lake WSE measurements collected in support of NASA{'}s Arctic-Boreal and Vulnerability Experiment, highlight routine deployment in support of the Lake Observation by Citizen Scientists and Satellites project, and explore WaSP utility for validating a novel GNSS interferometric reflectometry LArge Wave Warning System.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="Pitcher-2020-Advancing">
<titleInfo>
<title>Advancing Field-Based GNSS Surveying for Validation of Remotely Sensed Water Surface Elevation Products</title>
</titleInfo>
<name type="personal">
<namePart type="given">L</namePart>
<namePart type="given">H</namePart>
<namePart type="family">Pitcher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">L</namePart>
<namePart type="given">C</namePart>
<namePart type="family">Smith</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="given">W</namePart>
<namePart type="family">Cooley</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Annie</namePart>
<namePart type="family">Zaino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="given">L</namePart>
<namePart type="family">Carlson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="given">L</namePart>
<namePart type="family">Pettit</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="given">J</namePart>
<namePart type="family">Gleason</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="given">T</namePart>
<namePart type="family">Minear</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jessica</namePart>
<namePart type="given">V</namePart>
<namePart type="family">Fayne</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="given">J</namePart>
<namePart type="family">Willis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="given">S</namePart>
<namePart type="family">Hansen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kelly</namePart>
<namePart type="family">Easterday</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Harlan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Theodore</namePart>
<namePart type="family">Langhorst</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Topp</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wayana</namePart>
<namePart type="family">Dolan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">E</namePart>
<namePart type="given">D</namePart>
<namePart type="family">Kyzivat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Pietroniro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philip</namePart>
<namePart type="family">Marsh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daqing</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">Carter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="family">Onclin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nasim</namePart>
<namePart type="family">Hosseini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Evan</namePart>
<namePart type="given">J</namePart>
<namePart type="family">Wilcox</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="given">Medéiros</namePart>
<namePart type="family">Moreira</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Muriel</namePart>
<namePart type="family">Bergé-Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jean-François</namePart>
<namePart type="family">Crétaux</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Pavelsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Frontiers in Earth Science, Volume 8</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>Frontiers Media SA</publisher>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>To advance monitoring of surface water resources, new remote sensing technologies including the forthcoming Surface Water and Ocean Topography (SWOT) satellite (expected launch 2022) and its experimental airborne prototype AirSWOT are being developed to repeatedly map water surface elevation (WSE) and slope (WSS) of the world’s rivers, lakes, and reservoirs. However, the vertical accuracies of these novel technologies are largely unverified; thus, standard and repeatable field procedures to validate remotely sensed WSE and WSS are needed. To that end, we designed, engineered, and operationalized a Water Surface Profiler (WaSP) system that efficiently and accurately surveys WSE and WSS in a variety of surface water environments using Global Navigation Satellite Systems (GNSS) time-averaged measurements with Precise Point Positioning corrections. Here, we present WaSP construction, deployment, and a data processing workflow. We demonstrate WaSP data collections from repeat field deployments in the North Saskatchewan River and three prairie pothole lakes near Saskatoon, Saskatchewan, Canada. We find that WaSP reproducibly measures WSE and WSS with vertical accuracies similar to standard field survey methods [WSE root mean squared difference (RMSD) ∼8 cm, WSS RMSD ∼1.3 cm/km] and that repeat WaSP deployments accurately quantify water level changes (RMSD ∼3 cm). Collectively, these results suggest that WaSP is an easily deployed, self-contained system with sufficient accuracy for validating the decimeter-level expected accuracies of SWOT and AirSWOT. We conclude by discussing the utility of WaSP for validating airborne and spaceborne WSE mappings, present 63 WaSP in situ lake WSE measurements collected in support of NASA’s Arctic-Boreal and Vulnerability Experiment, highlight routine deployment in support of the Lake Observation by Citizen Scientists and Satellites project, and explore WaSP utility for validating a novel GNSS interferometric reflectometry LArge Wave Warning System.</abstract>
<identifier type="citekey">Pitcher-2020-Advancing</identifier>
<identifier type="doi">10.3389/feart.2020.00278</identifier>
<location>
<url>https://gwf-uwaterloo.github.io/gwf-publications/G20-76001</url>
</location>
<part>
<date>2020</date>
<detail type="volume"><number>8</number></detail>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Advancing Field-Based GNSS Surveying for Validation of Remotely Sensed Water Surface Elevation Products
%A Pitcher, L. H.
%A Smith, L. C.
%A Cooley, S. W.
%A Zaino, Annie
%A Carlson, R. L.
%A Pettit, Joseph L.
%A Gleason, C. J.
%A Minear, J. T.
%A Fayne, Jessica V.
%A Willis, M. J.
%A Hansen, J. S.
%A Easterday, Kelly
%A Harlan, M.
%A Langhorst, Theodore
%A Topp, S.
%A Dolan, Wayana
%A Kyzivat, E. D.
%A Pietroniro, A.
%A Marsh, Philip
%A Yang, Daqing
%A Carter, Thomas
%A Onclin, C.
%A Hosseini, Nasim
%A Wilcox, Evan J.
%A Moreira, Daniel Medéiros
%A Bergé-Nguyen, Muriel
%A Crétaux, Jean-François
%A Pavelsky, T.
%J Frontiers in Earth Science, Volume 8
%D 2020
%V 8
%I Frontiers Media SA
%F Pitcher-2020-Advancing
%X To advance monitoring of surface water resources, new remote sensing technologies including the forthcoming Surface Water and Ocean Topography (SWOT) satellite (expected launch 2022) and its experimental airborne prototype AirSWOT are being developed to repeatedly map water surface elevation (WSE) and slope (WSS) of the world’s rivers, lakes, and reservoirs. However, the vertical accuracies of these novel technologies are largely unverified; thus, standard and repeatable field procedures to validate remotely sensed WSE and WSS are needed. To that end, we designed, engineered, and operationalized a Water Surface Profiler (WaSP) system that efficiently and accurately surveys WSE and WSS in a variety of surface water environments using Global Navigation Satellite Systems (GNSS) time-averaged measurements with Precise Point Positioning corrections. Here, we present WaSP construction, deployment, and a data processing workflow. We demonstrate WaSP data collections from repeat field deployments in the North Saskatchewan River and three prairie pothole lakes near Saskatoon, Saskatchewan, Canada. We find that WaSP reproducibly measures WSE and WSS with vertical accuracies similar to standard field survey methods [WSE root mean squared difference (RMSD) ∼8 cm, WSS RMSD ∼1.3 cm/km] and that repeat WaSP deployments accurately quantify water level changes (RMSD ∼3 cm). Collectively, these results suggest that WaSP is an easily deployed, self-contained system with sufficient accuracy for validating the decimeter-level expected accuracies of SWOT and AirSWOT. We conclude by discussing the utility of WaSP for validating airborne and spaceborne WSE mappings, present 63 WaSP in situ lake WSE measurements collected in support of NASA’s Arctic-Boreal and Vulnerability Experiment, highlight routine deployment in support of the Lake Observation by Citizen Scientists and Satellites project, and explore WaSP utility for validating a novel GNSS interferometric reflectometry LArge Wave Warning System.
%R 10.3389/feart.2020.00278
%U https://gwf-uwaterloo.github.io/gwf-publications/G20-76001
%U https://doi.org/10.3389/feart.2020.00278
Markdown (Informal)
[Advancing Field-Based GNSS Surveying for Validation of Remotely Sensed Water Surface Elevation Products](https://gwf-uwaterloo.github.io/gwf-publications/G20-76001) (Pitcher et al., GWF 2020)
ACL
- L. H. Pitcher, L. C. Smith, S. W. Cooley, Annie Zaino, R. L. Carlson, Joseph L. Pettit, C. J. Gleason, J. T. Minear, Jessica V. Fayne, M. J. Willis, J. S. Hansen, Kelly Easterday, M. Harlan, Theodore Langhorst, S. Topp, Wayana Dolan, E. D. Kyzivat, A. Pietroniro, Philip Marsh, et al.. 2020. Advancing Field-Based GNSS Surveying for Validation of Remotely Sensed Water Surface Elevation Products. Frontiers in Earth Science, Volume 8, 8.