@article{Gascoin-2020-Estimating,
title = "Estimating Fractional Snow Cover in Open Terrain from Sentinel-2 Using the Normalized Difference Snow Index",
author = "Gascoin, Simon and
Dumont, Zacharie Barrou and
Deschamps-Berger, C{\'e}sar and
Marti, Florence and
Salgues, Germain and
L{\'o}pez‐Moreno, Juan I. and
Revuelto, Jes{\'u}s and
Michon, Timoth{\'e}e and
Schattan, Paul and
Hagolle, Olivier",
journal = "Remote Sensing, Volume 12, Issue 18",
volume = "12",
number = "18",
year = "2020",
publisher = "MDPI AG",
url = "https://gwf-uwaterloo.github.io/gwf-publications/G20-86001",
doi = "10.3390/rs12182904",
pages = "2904",
abstract = "Sentinel-2 provides the opportunity to map the snow cover at unprecedented spatial and temporal resolutions on a global scale. Here we calibrate and evaluate a simple empirical function to estimate the fractional snow cover (FSC) in open terrains using the normalized difference snow index (NDSI) from 20 m resolution Sentinel-2 images. The NDSI is computed from flat surface reflectance after masking cloud and snow-free areas. The NDSI{--}FSC function is calibrated using Pl{\'e}iades very high-resolution images and evaluated using independent datasets including SPOT 6/7 satellite images, time lapse camera photographs, terrestrial lidar scans and crowd-sourced in situ measurements. The calibration results show that the FSC can be represented with a sigmoid-shaped function 0.5 {\mbox{$\times$}} tanh(a {\mbox{$\times$}} NDSI + b) + 0.5, where a = 2.65 and b = −1.42, yielding a root mean square error (RMSE) of 25{\%}. Similar RMSE are obtained with different evaluation datasets with a high topographic variability. With this function, we estimate that the confidence interval on the FSC retrievals is 38{\%} at the 95{\%} confidence level.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="Gascoin-2020-Estimating">
<titleInfo>
<title>Estimating Fractional Snow Cover in Open Terrain from Sentinel-2 Using the Normalized Difference Snow Index</title>
</titleInfo>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Gascoin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zacharie</namePart>
<namePart type="given">Barrou</namePart>
<namePart type="family">Dumont</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">César</namePart>
<namePart type="family">Deschamps-Berger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Florence</namePart>
<namePart type="family">Marti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Germain</namePart>
<namePart type="family">Salgues</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="given">I</namePart>
<namePart type="family">López‐Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jesús</namePart>
<namePart type="family">Revuelto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Timothée</namePart>
<namePart type="family">Michon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Schattan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Olivier</namePart>
<namePart type="family">Hagolle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Remote Sensing, Volume 12, Issue 18</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MDPI AG</publisher>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>Sentinel-2 provides the opportunity to map the snow cover at unprecedented spatial and temporal resolutions on a global scale. Here we calibrate and evaluate a simple empirical function to estimate the fractional snow cover (FSC) in open terrains using the normalized difference snow index (NDSI) from 20 m resolution Sentinel-2 images. The NDSI is computed from flat surface reflectance after masking cloud and snow-free areas. The NDSI–FSC function is calibrated using Pléiades very high-resolution images and evaluated using independent datasets including SPOT 6/7 satellite images, time lapse camera photographs, terrestrial lidar scans and crowd-sourced in situ measurements. The calibration results show that the FSC can be represented with a sigmoid-shaped function 0.5 \times tanh(a \times NDSI + b) + 0.5, where a = 2.65 and b = −1.42, yielding a root mean square error (RMSE) of 25%. Similar RMSE are obtained with different evaluation datasets with a high topographic variability. With this function, we estimate that the confidence interval on the FSC retrievals is 38% at the 95% confidence level.</abstract>
<identifier type="citekey">Gascoin-2020-Estimating</identifier>
<identifier type="doi">10.3390/rs12182904</identifier>
<location>
<url>https://gwf-uwaterloo.github.io/gwf-publications/G20-86001</url>
</location>
<part>
<date>2020</date>
<detail type="volume"><number>12</number></detail>
<detail type="issue"><number>18</number></detail>
<detail type="page"><number>2904</number></detail>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Estimating Fractional Snow Cover in Open Terrain from Sentinel-2 Using the Normalized Difference Snow Index
%A Gascoin, Simon
%A Dumont, Zacharie Barrou
%A Deschamps-Berger, César
%A Marti, Florence
%A Salgues, Germain
%A López‐Moreno, Juan I.
%A Revuelto, Jesús
%A Michon, Timothée
%A Schattan, Paul
%A Hagolle, Olivier
%J Remote Sensing, Volume 12, Issue 18
%D 2020
%V 12
%N 18
%I MDPI AG
%F Gascoin-2020-Estimating
%X Sentinel-2 provides the opportunity to map the snow cover at unprecedented spatial and temporal resolutions on a global scale. Here we calibrate and evaluate a simple empirical function to estimate the fractional snow cover (FSC) in open terrains using the normalized difference snow index (NDSI) from 20 m resolution Sentinel-2 images. The NDSI is computed from flat surface reflectance after masking cloud and snow-free areas. The NDSI–FSC function is calibrated using Pléiades very high-resolution images and evaluated using independent datasets including SPOT 6/7 satellite images, time lapse camera photographs, terrestrial lidar scans and crowd-sourced in situ measurements. The calibration results show that the FSC can be represented with a sigmoid-shaped function 0.5 \times tanh(a \times NDSI + b) + 0.5, where a = 2.65 and b = −1.42, yielding a root mean square error (RMSE) of 25%. Similar RMSE are obtained with different evaluation datasets with a high topographic variability. With this function, we estimate that the confidence interval on the FSC retrievals is 38% at the 95% confidence level.
%R 10.3390/rs12182904
%U https://gwf-uwaterloo.github.io/gwf-publications/G20-86001
%U https://doi.org/10.3390/rs12182904
%P 2904
Markdown (Informal)
[Estimating Fractional Snow Cover in Open Terrain from Sentinel-2 Using the Normalized Difference Snow Index](https://gwf-uwaterloo.github.io/gwf-publications/G20-86001) (Gascoin et al., GWF 2020)
ACL
- Simon Gascoin, Zacharie Barrou Dumont, César Deschamps-Berger, Florence Marti, Germain Salgues, Juan I. López‐Moreno, Jesús Revuelto, Timothée Michon, Paul Schattan, and Olivier Hagolle. 2020. Estimating Fractional Snow Cover in Open Terrain from Sentinel-2 Using the Normalized Difference Snow Index. Remote Sensing, Volume 12, Issue 18, 12(18):2904.