@article{Gascoin-2020-Estimating,
    title = "Estimating Fractional Snow Cover in Open Terrain from Sentinel-2 Using the Normalized Difference Snow Index",
    author = "Gascoin, Simon  and
      Dumont, Zacharie Barrou  and
      Deschamps-Berger, C{\'e}sar  and
      Marti, Florence  and
      Salgues, Germain  and
      L{\'o}pez‐Moreno, Juan I.  and
      Revuelto, Jes{\'u}s  and
      Michon, Timoth{\'e}e  and
      Schattan, Paul  and
      Hagolle, Olivier",
    journal = "Remote Sensing, Volume 12, Issue 18",
    volume = "12",
    number = "18",
    year = "2020",
    publisher = "MDPI AG",
    url = "https://gwf-uwaterloo.github.io/gwf-publications/G20-86001",
    doi = "10.3390/rs12182904",
    pages = "2904",
    abstract = "Sentinel-2 provides the opportunity to map the snow cover at unprecedented spatial and temporal resolutions on a global scale. Here we calibrate and evaluate a simple empirical function to estimate the fractional snow cover (FSC) in open terrains using the normalized difference snow index (NDSI) from 20 m resolution Sentinel-2 images. The NDSI is computed from flat surface reflectance after masking cloud and snow-free areas. The NDSI{--}FSC function is calibrated using Pl{\'e}iades very high-resolution images and evaluated using independent datasets including SPOT 6/7 satellite images, time lapse camera photographs, terrestrial lidar scans and crowd-sourced in situ measurements. The calibration results show that the FSC can be represented with a sigmoid-shaped function 0.5 {\mbox{$\times$}} tanh(a {\mbox{$\times$}} NDSI + b) + 0.5, where a = 2.65 and b = −1.42, yielding a root mean square error (RMSE) of 25{\%}. Similar RMSE are obtained with different evaluation datasets with a high topographic variability. With this function, we estimate that the confidence interval on the FSC retrievals is 38{\%} at the 95{\%} confidence level.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="Gascoin-2020-Estimating">
    <titleInfo>
        <title>Estimating Fractional Snow Cover in Open Terrain from Sentinel-2 Using the Normalized Difference Snow Index</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Simon</namePart>
        <namePart type="family">Gascoin</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Zacharie</namePart>
        <namePart type="given">Barrou</namePart>
        <namePart type="family">Dumont</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">César</namePart>
        <namePart type="family">Deschamps-Berger</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Florence</namePart>
        <namePart type="family">Marti</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Germain</namePart>
        <namePart type="family">Salgues</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Juan</namePart>
        <namePart type="given">I</namePart>
        <namePart type="family">López‐Moreno</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Jesús</namePart>
        <namePart type="family">Revuelto</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Timothée</namePart>
        <namePart type="family">Michon</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Paul</namePart>
        <namePart type="family">Schattan</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Olivier</namePart>
        <namePart type="family">Hagolle</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2020</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <genre authority="bibutilsgt">journal article</genre>
    <relatedItem type="host">
        <titleInfo>
            <title>Remote Sensing, Volume 12, Issue 18</title>
        </titleInfo>
        <originInfo>
            <issuance>continuing</issuance>
            <publisher>MDPI AG</publisher>
        </originInfo>
        <genre authority="marcgt">periodical</genre>
        <genre authority="bibutilsgt">academic journal</genre>
    </relatedItem>
    <abstract>Sentinel-2 provides the opportunity to map the snow cover at unprecedented spatial and temporal resolutions on a global scale. Here we calibrate and evaluate a simple empirical function to estimate the fractional snow cover (FSC) in open terrains using the normalized difference snow index (NDSI) from 20 m resolution Sentinel-2 images. The NDSI is computed from flat surface reflectance after masking cloud and snow-free areas. The NDSI–FSC function is calibrated using Pléiades very high-resolution images and evaluated using independent datasets including SPOT 6/7 satellite images, time lapse camera photographs, terrestrial lidar scans and crowd-sourced in situ measurements. The calibration results show that the FSC can be represented with a sigmoid-shaped function 0.5 \times tanh(a \times NDSI + b) + 0.5, where a = 2.65 and b = −1.42, yielding a root mean square error (RMSE) of 25%. Similar RMSE are obtained with different evaluation datasets with a high topographic variability. With this function, we estimate that the confidence interval on the FSC retrievals is 38% at the 95% confidence level.</abstract>
    <identifier type="citekey">Gascoin-2020-Estimating</identifier>
    <identifier type="doi">10.3390/rs12182904</identifier>
    <location>
        <url>https://gwf-uwaterloo.github.io/gwf-publications/G20-86001</url>
    </location>
    <part>
        <date>2020</date>
        <detail type="volume"><number>12</number></detail>
        <detail type="issue"><number>18</number></detail>
        <detail type="page"><number>2904</number></detail>
    </part>
</mods>
</modsCollection>
%0 Journal Article
%T Estimating Fractional Snow Cover in Open Terrain from Sentinel-2 Using the Normalized Difference Snow Index
%A Gascoin, Simon
%A Dumont, Zacharie Barrou
%A Deschamps-Berger, César
%A Marti, Florence
%A Salgues, Germain
%A López‐Moreno, Juan I.
%A Revuelto, Jesús
%A Michon, Timothée
%A Schattan, Paul
%A Hagolle, Olivier
%J Remote Sensing, Volume 12, Issue 18
%D 2020
%V 12
%N 18
%I MDPI AG
%F Gascoin-2020-Estimating
%X Sentinel-2 provides the opportunity to map the snow cover at unprecedented spatial and temporal resolutions on a global scale. Here we calibrate and evaluate a simple empirical function to estimate the fractional snow cover (FSC) in open terrains using the normalized difference snow index (NDSI) from 20 m resolution Sentinel-2 images. The NDSI is computed from flat surface reflectance after masking cloud and snow-free areas. The NDSI–FSC function is calibrated using Pléiades very high-resolution images and evaluated using independent datasets including SPOT 6/7 satellite images, time lapse camera photographs, terrestrial lidar scans and crowd-sourced in situ measurements. The calibration results show that the FSC can be represented with a sigmoid-shaped function 0.5 \times tanh(a \times NDSI + b) + 0.5, where a = 2.65 and b = −1.42, yielding a root mean square error (RMSE) of 25%. Similar RMSE are obtained with different evaluation datasets with a high topographic variability. With this function, we estimate that the confidence interval on the FSC retrievals is 38% at the 95% confidence level.
%R 10.3390/rs12182904
%U https://gwf-uwaterloo.github.io/gwf-publications/G20-86001
%U https://doi.org/10.3390/rs12182904
%P 2904
Markdown (Informal)
[Estimating Fractional Snow Cover in Open Terrain from Sentinel-2 Using the Normalized Difference Snow Index](https://gwf-uwaterloo.github.io/gwf-publications/G20-86001) (Gascoin et al., GWF 2020)
ACL
- Simon Gascoin, Zacharie Barrou Dumont, César Deschamps-Berger, Florence Marti, Germain Salgues, Juan I. López‐Moreno, Jesús Revuelto, Timothée Michon, Paul Schattan, and Olivier Hagolle. 2020. Estimating Fractional Snow Cover in Open Terrain from Sentinel-2 Using the Normalized Difference Snow Index. Remote Sensing, Volume 12, Issue 18, 12(18):2904.