@article{Seyednasrollah-2020-Seasonal,
title = "Seasonal variation in the canopy color of temperate evergreen conifer forests",
author = "Seyednasrollah, Bijan and
Bowling, David R. and
Cheng, Rui and
Logan, Barry A. and
Magney, Troy S. and
Frankenberg, Christian and
Yang, Julia C. and
Young, Adam M. and
Hufkens, Koen and
Arain, M. Altaf and
Black, T. Andrew and
Blanken, Peter D. and
Bracho, Rosvel and
Jassal, Rachhpal S. and
Hollinger, David Y. and
Law, Beverly E. and
Nesic, Zoran and
Richardson, Andrew D.",
journal = "New Phytologist, Volume 229, Issue 5",
volume = "229",
number = "5",
year = "2020",
publisher = "Wiley",
url = "https://gwf-uwaterloo.github.io/gwf-publications/G20-23001",
doi = "10.1111/nph.17046",
pages = "2586--2600",
abstract = "Evergreen conifer forests are the most prevalent land cover type in North America. Seasonal changes in the color of evergreen forest canopies have been documented with near-surface remote sensing, but the physiological mechanisms underlying these changes, and the implications for photosynthetic uptake, have not been fully elucidated. Here, we integrate on-the-ground phenological observations, leaf-level physiological measurements, near surface hyperspectral remote sensing and digital camera imagery, tower-based CO2 flux measurements, and a predictive model to simulate seasonal canopy color dynamics. We show that seasonal changes in canopy color occur independently of new leaf production, but track changes in chlorophyll fluorescence, the photochemical reflectance index, and leaf pigmentation. We demonstrate that at winter-dormant sites, seasonal changes in canopy color can be used to predict the onset of canopy-level photosynthesis in spring, and its cessation in autumn. Finally, we parameterize a simple temperature-based model to predict the seasonal cycle of canopy greenness, and we show that the model successfully simulates interannual variation in the timing of changes in canopy color. These results provide mechanistic insight into the factors driving seasonal changes in evergreen canopy color and provide opportunities to monitor and model seasonal variation in photosynthetic activity using color-based vegetation indices.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="Seyednasrollah-2020-Seasonal">
<titleInfo>
<title>Seasonal variation in the canopy color of temperate evergreen conifer forests</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bijan</namePart>
<namePart type="family">Seyednasrollah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Bowling</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rui</namePart>
<namePart type="family">Cheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="given">A</namePart>
<namePart type="family">Logan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Troy</namePart>
<namePart type="given">S</namePart>
<namePart type="family">Magney</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Frankenberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="given">C</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Young</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Koen</namePart>
<namePart type="family">Hufkens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="given">Altaf</namePart>
<namePart type="family">Arain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="given">Andrew</namePart>
<namePart type="family">Black</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="given">D</namePart>
<namePart type="family">Blanken</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rosvel</namePart>
<namePart type="family">Bracho</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rachhpal</namePart>
<namePart type="given">S</namePart>
<namePart type="family">Jassal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="given">Y</namePart>
<namePart type="family">Hollinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Beverly</namePart>
<namePart type="given">E</namePart>
<namePart type="family">Law</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zoran</namePart>
<namePart type="family">Nesic</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="given">D</namePart>
<namePart type="family">Richardson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>New Phytologist, Volume 229, Issue 5</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>Wiley</publisher>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>Evergreen conifer forests are the most prevalent land cover type in North America. Seasonal changes in the color of evergreen forest canopies have been documented with near-surface remote sensing, but the physiological mechanisms underlying these changes, and the implications for photosynthetic uptake, have not been fully elucidated. Here, we integrate on-the-ground phenological observations, leaf-level physiological measurements, near surface hyperspectral remote sensing and digital camera imagery, tower-based CO2 flux measurements, and a predictive model to simulate seasonal canopy color dynamics. We show that seasonal changes in canopy color occur independently of new leaf production, but track changes in chlorophyll fluorescence, the photochemical reflectance index, and leaf pigmentation. We demonstrate that at winter-dormant sites, seasonal changes in canopy color can be used to predict the onset of canopy-level photosynthesis in spring, and its cessation in autumn. Finally, we parameterize a simple temperature-based model to predict the seasonal cycle of canopy greenness, and we show that the model successfully simulates interannual variation in the timing of changes in canopy color. These results provide mechanistic insight into the factors driving seasonal changes in evergreen canopy color and provide opportunities to monitor and model seasonal variation in photosynthetic activity using color-based vegetation indices.</abstract>
<identifier type="citekey">Seyednasrollah-2020-Seasonal</identifier>
<identifier type="doi">10.1111/nph.17046</identifier>
<location>
<url>https://gwf-uwaterloo.github.io/gwf-publications/G20-23001</url>
</location>
<part>
<date>2020</date>
<detail type="volume"><number>229</number></detail>
<detail type="issue"><number>5</number></detail>
<extent unit="page">
<start>2586</start>
<end>2600</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Seasonal variation in the canopy color of temperate evergreen conifer forests
%A Seyednasrollah, Bijan
%A Bowling, David R.
%A Cheng, Rui
%A Logan, Barry A.
%A Magney, Troy S.
%A Frankenberg, Christian
%A Yang, Julia C.
%A Young, Adam M.
%A Hufkens, Koen
%A Arain, M. Altaf
%A Black, T. Andrew
%A Blanken, Peter D.
%A Bracho, Rosvel
%A Jassal, Rachhpal S.
%A Hollinger, David Y.
%A Law, Beverly E.
%A Nesic, Zoran
%A Richardson, Andrew D.
%J New Phytologist, Volume 229, Issue 5
%D 2020
%V 229
%N 5
%I Wiley
%F Seyednasrollah-2020-Seasonal
%X Evergreen conifer forests are the most prevalent land cover type in North America. Seasonal changes in the color of evergreen forest canopies have been documented with near-surface remote sensing, but the physiological mechanisms underlying these changes, and the implications for photosynthetic uptake, have not been fully elucidated. Here, we integrate on-the-ground phenological observations, leaf-level physiological measurements, near surface hyperspectral remote sensing and digital camera imagery, tower-based CO2 flux measurements, and a predictive model to simulate seasonal canopy color dynamics. We show that seasonal changes in canopy color occur independently of new leaf production, but track changes in chlorophyll fluorescence, the photochemical reflectance index, and leaf pigmentation. We demonstrate that at winter-dormant sites, seasonal changes in canopy color can be used to predict the onset of canopy-level photosynthesis in spring, and its cessation in autumn. Finally, we parameterize a simple temperature-based model to predict the seasonal cycle of canopy greenness, and we show that the model successfully simulates interannual variation in the timing of changes in canopy color. These results provide mechanistic insight into the factors driving seasonal changes in evergreen canopy color and provide opportunities to monitor and model seasonal variation in photosynthetic activity using color-based vegetation indices.
%R 10.1111/nph.17046
%U https://gwf-uwaterloo.github.io/gwf-publications/G20-23001
%U https://doi.org/10.1111/nph.17046
%P 2586-2600
Markdown (Informal)
[Seasonal variation in the canopy color of temperate evergreen conifer forests](https://gwf-uwaterloo.github.io/gwf-publications/G20-23001) (Seyednasrollah et al., GWF 2020)
ACL
- Bijan Seyednasrollah, David R. Bowling, Rui Cheng, Barry A. Logan, Troy S. Magney, Christian Frankenberg, Julia C. Yang, Adam M. Young, Koen Hufkens, M. Altaf Arain, T. Andrew Black, Peter D. Blanken, Rosvel Bracho, Rachhpal S. Jassal, David Y. Hollinger, Beverly E. Law, Zoran Nesic, and Andrew D. Richardson. 2020. Seasonal variation in the canopy color of temperate evergreen conifer forests. New Phytologist, Volume 229, Issue 5, 229(5):2586–2600.