Statistical upscaling of ecosystem CO <sub>2</sub> fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties
Anna‐Maria Virkkala, Juha Aalto, Brendan M. Rogers, Torbern Tagesson, Claire C. Treat, Susan M. Natali, Jennifer D. Watts, Stefano Potter, Aleksi Lehtonen, Marguerite Mauritz, Edward A. G. Schuur, John Kochendorfer, Donatella Zona, Walter C. Oechel, Hideki Kobayashi, Elyn Humphreys, Mathias Goeckede, Hiroyasu Iwata, Peter M. Lafleur, Eugénie Euskirchen, Stef Bokhorst, Maija E. Marushchak, Pertti J. Martikainen, Bo Elberling, Carolina Voigt, Christina Biasi, Oliver Sonnentag, Frans‐Jan W. Parmentier, Masahito Ueyama, Gerardo Celis, Vincent L. St. Louis, Craig A. Emmerton, Matthias Peichl, Jinshu Chi, Järvi Järveoja, Mats Nilsson, Steven F. Oberbauer, M. S. Torn, Sang Jong Park, A. J. Dolman, Ivan Mammarella, Namyi Chae, Rafael Poyatos, Efrén López‐Blanco, Torben R. Christensen, Mi Hye Kwon, Torsten Sachs, David Holl, Miska Luoto
Abstract
The regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990–2015 from 148 terrestrial high-latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2) across the high-latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE-focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE −46 and −29 g C m−2 yr−1, respectively) compared to tundra (average annual NEE +10 and −2 g C m−2 yr−1). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high-latitude region was on average an annual CO2 sink during 1990–2015, although uncertainty remains high.- Cite:
- Anna‐Maria Virkkala, Juha Aalto, Brendan M. Rogers, Torbern Tagesson, Claire C. Treat, Susan M. Natali, Jennifer D. Watts, Stefano Potter, Aleksi Lehtonen, Marguerite Mauritz, Edward A. G. Schuur, John Kochendorfer, Donatella Zona, Walter C. Oechel, Hideki Kobayashi, Elyn Humphreys, Mathias Goeckede, Hiroyasu Iwata, Peter M. Lafleur, et al.. 2021. Statistical upscaling of ecosystem CO 2 fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties. Global Change Biology, Volume 27, Issue 17, 27(17):4040–4059.
- Copy Citation:
Export citation
@article{Virkkala-2021-Statistical, title = "Statistical upscaling of ecosystem CO {\textless}sub{\textgreater}2{\textless}/sub{\textgreater} fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties", author = {Virkkala, Anna‐Maria and Aalto, Juha and Rogers, Brendan M. and Tagesson, Torbern and Treat, Claire C. and Natali, Susan M. and Watts, Jennifer D. and Potter, Stefano and Lehtonen, Aleksi and Mauritz, Marguerite and Schuur, Edward A. G. and Kochendorfer, John and Zona, Donatella and Oechel, Walter C. and Kobayashi, Hideki and Humphreys, Elyn and Goeckede, Mathias and Iwata, Hiroyasu and Lafleur, Peter M. and Euskirchen, Eug{\'e}nie and Bokhorst, Stef and Marushchak, Maija E. and Martikainen, Pertti J. and Elberling, Bo and Voigt, Carolina and Biasi, Christina and Sonnentag, Oliver and Parmentier, Frans‐Jan W. and Ueyama, Masahito and Celis, Gerardo and Louis, Vincent L. St. and Emmerton, Craig A. and Peichl, Matthias and Chi, Jinshu and J{\"a}rveoja, J{\"a}rvi and Nilsson, Mats and Oberbauer, Steven F. and Torn, M. S. and Park, Sang Jong and Dolman, A. J. and Mammarella, Ivan and Chae, Namyi and Poyatos, Rafael and L{\'o}pez‐Blanco, Efr{\'e}n and Christensen, Torben R. and Kwon, Mi Hye and Sachs, Torsten and Holl, David and Luoto, Miska}, journal = "Global Change Biology, Volume 27, Issue 17", volume = "27", number = "17", year = "2021", publisher = "Wiley", url = "https://gwf-uwaterloo.github.io/gwf-publications/G21-100001", doi = "10.1111/gcb.15659", pages = "4040--4059", abstract = "The regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990{--}2015 from 148 terrestrial high-latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2) across the high-latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE-focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE −46 and −29 g C m−2 yr−1, respectively) compared to tundra (average annual NEE +10 and −2 g C m−2 yr−1). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high-latitude region was on average an annual CO2 sink during 1990{--}2015, although uncertainty remains high.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="Virkkala-2021-Statistical"> <titleInfo> <title>Statistical upscaling of ecosystem CO \textlesssub\textgreater2\textless/sub\textgreater fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties</title> </titleInfo> <name type="personal"> <namePart type="given">Anna‐Maria</namePart> <namePart type="family">Virkkala</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Juha</namePart> <namePart type="family">Aalto</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Brendan</namePart> <namePart type="given">M</namePart> <namePart type="family">Rogers</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Torbern</namePart> <namePart type="family">Tagesson</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Claire</namePart> <namePart type="given">C</namePart> <namePart type="family">Treat</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Susan</namePart> <namePart type="given">M</namePart> <namePart type="family">Natali</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jennifer</namePart> <namePart type="given">D</namePart> <namePart type="family">Watts</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Stefano</namePart> <namePart type="family">Potter</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Aleksi</namePart> <namePart type="family">Lehtonen</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marguerite</namePart> <namePart type="family">Mauritz</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Edward</namePart> <namePart type="given">A</namePart> <namePart type="given">G</namePart> <namePart type="family">Schuur</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">John</namePart> <namePart type="family">Kochendorfer</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Donatella</namePart> <namePart type="family">Zona</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Walter</namePart> <namePart type="given">C</namePart> <namePart type="family">Oechel</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hideki</namePart> <namePart type="family">Kobayashi</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Elyn</namePart> <namePart type="family">Humphreys</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mathias</namePart> <namePart type="family">Goeckede</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hiroyasu</namePart> <namePart type="family">Iwata</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Peter</namePart> <namePart type="given">M</namePart> <namePart type="family">Lafleur</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Eugénie</namePart> <namePart type="family">Euskirchen</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Stef</namePart> <namePart type="family">Bokhorst</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Maija</namePart> <namePart type="given">E</namePart> <namePart type="family">Marushchak</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Pertti</namePart> <namePart type="given">J</namePart> <namePart type="family">Martikainen</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Bo</namePart> <namePart type="family">Elberling</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Carolina</namePart> <namePart type="family">Voigt</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christina</namePart> <namePart type="family">Biasi</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Oliver</namePart> <namePart type="family">Sonnentag</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Frans‐Jan</namePart> <namePart type="given">W</namePart> <namePart type="family">Parmentier</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Masahito</namePart> <namePart type="family">Ueyama</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Gerardo</namePart> <namePart type="family">Celis</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Vincent</namePart> <namePart type="given">L</namePart> <namePart type="given">St.</namePart> <namePart type="family">Louis</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Craig</namePart> <namePart type="given">A</namePart> <namePart type="family">Emmerton</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matthias</namePart> <namePart type="family">Peichl</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jinshu</namePart> <namePart type="family">Chi</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Järvi</namePart> <namePart type="family">Järveoja</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mats</namePart> <namePart type="family">Nilsson</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Steven</namePart> <namePart type="given">F</namePart> <namePart type="family">Oberbauer</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">M</namePart> <namePart type="given">S</namePart> <namePart type="family">Torn</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sang</namePart> <namePart type="given">Jong</namePart> <namePart type="family">Park</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">A</namePart> <namePart type="given">J</namePart> <namePart type="family">Dolman</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ivan</namePart> <namePart type="family">Mammarella</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Namyi</namePart> <namePart type="family">Chae</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Rafael</namePart> <namePart type="family">Poyatos</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Efrén</namePart> <namePart type="family">López‐Blanco</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Torben</namePart> <namePart type="given">R</namePart> <namePart type="family">Christensen</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mi</namePart> <namePart type="given">Hye</namePart> <namePart type="family">Kwon</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Torsten</namePart> <namePart type="family">Sachs</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">David</namePart> <namePart type="family">Holl</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Miska</namePart> <namePart type="family">Luoto</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2021</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <genre authority="bibutilsgt">journal article</genre> <relatedItem type="host"> <titleInfo> <title>Global Change Biology, Volume 27, Issue 17</title> </titleInfo> <originInfo> <issuance>continuing</issuance> <publisher>Wiley</publisher> </originInfo> <genre authority="marcgt">periodical</genre> <genre authority="bibutilsgt">academic journal</genre> </relatedItem> <abstract>The regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990–2015 from 148 terrestrial high-latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2) across the high-latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE-focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE −46 and −29 g C m−2 yr−1, respectively) compared to tundra (average annual NEE +10 and −2 g C m−2 yr−1). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high-latitude region was on average an annual CO2 sink during 1990–2015, although uncertainty remains high.</abstract> <identifier type="citekey">Virkkala-2021-Statistical</identifier> <identifier type="doi">10.1111/gcb.15659</identifier> <location> <url>https://gwf-uwaterloo.github.io/gwf-publications/G21-100001</url> </location> <part> <date>2021</date> <detail type="volume"><number>27</number></detail> <detail type="issue"><number>17</number></detail> <extent unit="page"> <start>4040</start> <end>4059</end> </extent> </part> </mods> </modsCollection>
%0 Journal Article %T Statistical upscaling of ecosystem CO \textlesssub\textgreater2\textless/sub\textgreater fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties %A Virkkala, Anna‐Maria %A Aalto, Juha %A Rogers, Brendan M. %A Tagesson, Torbern %A Treat, Claire C. %A Natali, Susan M. %A Watts, Jennifer D. %A Potter, Stefano %A Lehtonen, Aleksi %A Mauritz, Marguerite %A Schuur, Edward A. G. %A Kochendorfer, John %A Zona, Donatella %A Oechel, Walter C. %A Kobayashi, Hideki %A Humphreys, Elyn %A Goeckede, Mathias %A Iwata, Hiroyasu %A Lafleur, Peter M. %A Euskirchen, Eugénie %A Bokhorst, Stef %A Marushchak, Maija E. %A Martikainen, Pertti J. %A Elberling, Bo %A Voigt, Carolina %A Biasi, Christina %A Sonnentag, Oliver %A Parmentier, Frans‐Jan W. %A Ueyama, Masahito %A Celis, Gerardo %A Louis, Vincent L. St. %A Emmerton, Craig A. %A Peichl, Matthias %A Chi, Jinshu %A Järveoja, Järvi %A Nilsson, Mats %A Oberbauer, Steven F. %A Torn, M. S. %A Park, Sang Jong %A Dolman, A. J. %A Mammarella, Ivan %A Chae, Namyi %A Poyatos, Rafael %A López‐Blanco, Efrén %A Christensen, Torben R. %A Kwon, Mi Hye %A Sachs, Torsten %A Holl, David %A Luoto, Miska %J Global Change Biology, Volume 27, Issue 17 %D 2021 %V 27 %N 17 %I Wiley %F Virkkala-2021-Statistical %X The regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990–2015 from 148 terrestrial high-latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2) across the high-latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE-focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE −46 and −29 g C m−2 yr−1, respectively) compared to tundra (average annual NEE +10 and −2 g C m−2 yr−1). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high-latitude region was on average an annual CO2 sink during 1990–2015, although uncertainty remains high. %R 10.1111/gcb.15659 %U https://gwf-uwaterloo.github.io/gwf-publications/G21-100001 %U https://doi.org/10.1111/gcb.15659 %P 4040-4059
Markdown (Informal)
[Statistical upscaling of ecosystem CO <sub>2</sub> fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties](https://gwf-uwaterloo.github.io/gwf-publications/G21-100001) (Virkkala et al., GWF 2021)
- Statistical upscaling of ecosystem CO 2 fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties (Virkkala et al., GWF 2021)
ACL
- Anna‐Maria Virkkala, Juha Aalto, Brendan M. Rogers, Torbern Tagesson, Claire C. Treat, Susan M. Natali, Jennifer D. Watts, Stefano Potter, Aleksi Lehtonen, Marguerite Mauritz, Edward A. G. Schuur, John Kochendorfer, Donatella Zona, Walter C. Oechel, Hideki Kobayashi, Elyn Humphreys, Mathias Goeckede, Hiroyasu Iwata, Peter M. Lafleur, et al.. 2021. Statistical upscaling of ecosystem CO 2 fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties. Global Change Biology, Volume 27, Issue 17, 27(17):4040–4059.