Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada
Jennifer D. Watts, Susan M. Natali, C. Minions, D. A. Risk, Kyle A. Arndt, Donatella Zona, Eugénie Euskirchen, A. V. Rocha, Oliver Sonnentag, Manuel Helbig, Aram Kalhori, W. C. Oechel, Hiroki Ikawa, Masahito Ueyama, Rikie Suzuki, Hideki Kobayashi, Gerardo Celis, Edward A. G. Schuur, Elyn Humphreys, Yongwon Kim, Bang-Yong Lee, Scott J. Goetz, Nima Madani, Luke Schiferl, R. Commane, J. S. Kimball, Zhihua Liu, M. S. Torn, Stefano Potter, Jonathan Wang, M. Torre Jorgenson, Jingfeng Xiao, Xing Li, C. Edgar
Abstract
Abstract Soil respiration (i.e. from soils and roots) provides one of the largest global fluxes of carbon dioxide (CO 2 ) to the atmosphere and is likely to increase with warming, yet the magnitude of soil respiration from rapidly thawing Arctic-boreal regions is not well understood. To address this knowledge gap, we first compiled a new CO 2 flux database for permafrost-affected tundra and boreal ecosystems in Alaska and Northwest Canada. We then used the CO 2 database, multi-sensor satellite imagery, and random forest models to assess the regional magnitude of soil respiration. The flux database includes a new Soil Respiration Station network of chamber-based fluxes, and fluxes from eddy covariance towers. Our site-level data, spanning September 2016 to August 2017, revealed that the largest soil respiration emissions occurred during the summer (June–August) and that summer fluxes were higher in boreal sites (1.87 ± 0.67 g CO 2 –C m −2 d −1 ) relative to tundra (0.94 ± 0.4 g CO 2 –C m −2 d −1 ). We also observed considerable emissions (boreal: 0.24 ± 0.2 g CO 2 –C m −2 d −1 ; tundra: 0.18 ± 0.16 g CO 2 –C m −2 d −1 ) from soils during the winter (November–March) despite frozen surface conditions. Our model estimates indicated an annual region-wide loss from soil respiration of 591 ± 120 Tg CO 2 –C during the 2016–2017 period. Summer months contributed to 58% of the regional soil respiration, winter months contributed to 15%, and the shoulder months contributed to 27%. In total, soil respiration offset 54% of annual gross primary productivity (GPP) across the study domain. We also found that in tundra environments, transitional tundra/boreal ecotones, and in landscapes recently affected by fire, soil respiration often exceeded GPP, resulting in a net annual source of CO 2 to the atmosphere. As this region continues to warm, soil respiration may increasingly offset GPP, further amplifying global climate change.- Cite:
- Jennifer D. Watts, Susan M. Natali, C. Minions, D. A. Risk, Kyle A. Arndt, Donatella Zona, Eugénie Euskirchen, A. V. Rocha, Oliver Sonnentag, Manuel Helbig, Aram Kalhori, W. C. Oechel, Hiroki Ikawa, Masahito Ueyama, Rikie Suzuki, Hideki Kobayashi, Gerardo Celis, Edward A. G. Schuur, Elyn Humphreys, et al.. 2021. Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada. Environmental Research Letters, Volume 16, Issue 8, 16(8):084051.
- Copy Citation:
Export citation
@article{Watts-2021-Soil, title = "Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada", author = "Watts, Jennifer D. and Natali, Susan M. and Minions, C. and Risk, D. A. and Arndt, Kyle A. and Zona, Donatella and Euskirchen, Eug{\'e}nie and Rocha, A. V. and Sonnentag, Oliver and Helbig, Manuel and Kalhori, Aram and Oechel, W. C. and Ikawa, Hiroki and Ueyama, Masahito and Suzuki, Rikie and Kobayashi, Hideki and Celis, Gerardo and Schuur, Edward A. G. and Humphreys, Elyn and Kim, Yongwon and Lee, Bang-Yong and Goetz, Scott J. and Madani, Nima and Schiferl, Luke and Commane, R. and Kimball, J. S. and Liu, Zhihua and Torn, M. S. and Potter, Stefano and Wang, Jonathan and Jorgenson, M. Torre and Xiao, Jingfeng and Li, Xing and Edgar, C.", journal = "Environmental Research Letters, Volume 16, Issue 8", volume = "16", number = "8", year = "2021", publisher = "IOP Publishing", url = "https://gwf-uwaterloo.github.io/gwf-publications/G21-101001", doi = "10.1088/1748-9326/ac1222", pages = "084051", abstract = "Abstract Soil respiration (i.e. from soils and roots) provides one of the largest global fluxes of carbon dioxide (CO 2 ) to the atmosphere and is likely to increase with warming, yet the magnitude of soil respiration from rapidly thawing Arctic-boreal regions is not well understood. To address this knowledge gap, we first compiled a new CO 2 flux database for permafrost-affected tundra and boreal ecosystems in Alaska and Northwest Canada. We then used the CO 2 database, multi-sensor satellite imagery, and random forest models to assess the regional magnitude of soil respiration. The flux database includes a new Soil Respiration Station network of chamber-based fluxes, and fluxes from eddy covariance towers. Our site-level data, spanning September 2016 to August 2017, revealed that the largest soil respiration emissions occurred during the summer (June{--}August) and that summer fluxes were higher in boreal sites (1.87 {\mbox{$\pm$}} 0.67 g CO 2 {--}C m −2 d −1 ) relative to tundra (0.94 {\mbox{$\pm$}} 0.4 g CO 2 {--}C m −2 d −1 ). We also observed considerable emissions (boreal: 0.24 {\mbox{$\pm$}} 0.2 g CO 2 {--}C m −2 d −1 ; tundra: 0.18 {\mbox{$\pm$}} 0.16 g CO 2 {--}C m −2 d −1 ) from soils during the winter (November{--}March) despite frozen surface conditions. Our model estimates indicated an annual region-wide loss from soil respiration of 591 {\mbox{$\pm$}} 120 Tg CO 2 {--}C during the 2016{--}2017 period. Summer months contributed to 58{\%} of the regional soil respiration, winter months contributed to 15{\%}, and the shoulder months contributed to 27{\%}. In total, soil respiration offset 54{\%} of annual gross primary productivity (GPP) across the study domain. We also found that in tundra environments, transitional tundra/boreal ecotones, and in landscapes recently affected by fire, soil respiration often exceeded GPP, resulting in a net annual source of CO 2 to the atmosphere. As this region continues to warm, soil respiration may increasingly offset GPP, further amplifying global climate change.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="Watts-2021-Soil"> <titleInfo> <title>Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada</title> </titleInfo> <name type="personal"> <namePart type="given">Jennifer</namePart> <namePart type="given">D</namePart> <namePart type="family">Watts</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Susan</namePart> <namePart type="given">M</namePart> <namePart type="family">Natali</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">C</namePart> <namePart type="family">Minions</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">D</namePart> <namePart type="given">A</namePart> <namePart type="family">Risk</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Kyle</namePart> <namePart type="given">A</namePart> <namePart type="family">Arndt</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Donatella</namePart> <namePart type="family">Zona</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Eugénie</namePart> <namePart type="family">Euskirchen</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">A</namePart> <namePart type="given">V</namePart> <namePart type="family">Rocha</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Oliver</namePart> <namePart type="family">Sonnentag</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Manuel</namePart> <namePart type="family">Helbig</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Aram</namePart> <namePart type="family">Kalhori</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">W</namePart> <namePart type="given">C</namePart> <namePart type="family">Oechel</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hiroki</namePart> <namePart type="family">Ikawa</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Masahito</namePart> <namePart type="family">Ueyama</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Rikie</namePart> <namePart type="family">Suzuki</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hideki</namePart> <namePart type="family">Kobayashi</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Gerardo</namePart> <namePart type="family">Celis</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Edward</namePart> <namePart type="given">A</namePart> <namePart type="given">G</namePart> <namePart type="family">Schuur</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Elyn</namePart> <namePart type="family">Humphreys</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yongwon</namePart> <namePart type="family">Kim</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Bang-Yong</namePart> <namePart type="family">Lee</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Scott</namePart> <namePart type="given">J</namePart> <namePart type="family">Goetz</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Nima</namePart> <namePart type="family">Madani</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Luke</namePart> <namePart type="family">Schiferl</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">R</namePart> <namePart type="family">Commane</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">J</namePart> <namePart type="given">S</namePart> <namePart type="family">Kimball</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Zhihua</namePart> <namePart type="family">Liu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">M</namePart> <namePart type="given">S</namePart> <namePart type="family">Torn</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Stefano</namePart> <namePart type="family">Potter</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jonathan</namePart> <namePart type="family">Wang</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">M</namePart> <namePart type="given">Torre</namePart> <namePart type="family">Jorgenson</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jingfeng</namePart> <namePart type="family">Xiao</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Xing</namePart> <namePart type="family">Li</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">C</namePart> <namePart type="family">Edgar</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2021</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <genre authority="bibutilsgt">journal article</genre> <relatedItem type="host"> <titleInfo> <title>Environmental Research Letters, Volume 16, Issue 8</title> </titleInfo> <originInfo> <issuance>continuing</issuance> <publisher>IOP Publishing</publisher> </originInfo> <genre authority="marcgt">periodical</genre> <genre authority="bibutilsgt">academic journal</genre> </relatedItem> <abstract>Abstract Soil respiration (i.e. from soils and roots) provides one of the largest global fluxes of carbon dioxide (CO 2 ) to the atmosphere and is likely to increase with warming, yet the magnitude of soil respiration from rapidly thawing Arctic-boreal regions is not well understood. To address this knowledge gap, we first compiled a new CO 2 flux database for permafrost-affected tundra and boreal ecosystems in Alaska and Northwest Canada. We then used the CO 2 database, multi-sensor satellite imagery, and random forest models to assess the regional magnitude of soil respiration. The flux database includes a new Soil Respiration Station network of chamber-based fluxes, and fluxes from eddy covariance towers. Our site-level data, spanning September 2016 to August 2017, revealed that the largest soil respiration emissions occurred during the summer (June–August) and that summer fluxes were higher in boreal sites (1.87 \pm 0.67 g CO 2 –C m −2 d −1 ) relative to tundra (0.94 \pm 0.4 g CO 2 –C m −2 d −1 ). We also observed considerable emissions (boreal: 0.24 \pm 0.2 g CO 2 –C m −2 d −1 ; tundra: 0.18 \pm 0.16 g CO 2 –C m −2 d −1 ) from soils during the winter (November–March) despite frozen surface conditions. Our model estimates indicated an annual region-wide loss from soil respiration of 591 \pm 120 Tg CO 2 –C during the 2016–2017 period. Summer months contributed to 58% of the regional soil respiration, winter months contributed to 15%, and the shoulder months contributed to 27%. In total, soil respiration offset 54% of annual gross primary productivity (GPP) across the study domain. We also found that in tundra environments, transitional tundra/boreal ecotones, and in landscapes recently affected by fire, soil respiration often exceeded GPP, resulting in a net annual source of CO 2 to the atmosphere. As this region continues to warm, soil respiration may increasingly offset GPP, further amplifying global climate change.</abstract> <identifier type="citekey">Watts-2021-Soil</identifier> <identifier type="doi">10.1088/1748-9326/ac1222</identifier> <location> <url>https://gwf-uwaterloo.github.io/gwf-publications/G21-101001</url> </location> <part> <date>2021</date> <detail type="volume"><number>16</number></detail> <detail type="issue"><number>8</number></detail> <detail type="page"><number>084051</number></detail> </part> </mods> </modsCollection>
%0 Journal Article %T Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada %A Watts, Jennifer D. %A Natali, Susan M. %A Minions, C. %A Risk, D. A. %A Arndt, Kyle A. %A Zona, Donatella %A Euskirchen, Eugénie %A Rocha, A. V. %A Sonnentag, Oliver %A Helbig, Manuel %A Kalhori, Aram %A Oechel, W. C. %A Ikawa, Hiroki %A Ueyama, Masahito %A Suzuki, Rikie %A Kobayashi, Hideki %A Celis, Gerardo %A Schuur, Edward A. G. %A Humphreys, Elyn %A Kim, Yongwon %A Lee, Bang-Yong %A Goetz, Scott J. %A Madani, Nima %A Schiferl, Luke %A Commane, R. %A Kimball, J. S. %A Liu, Zhihua %A Torn, M. S. %A Potter, Stefano %A Wang, Jonathan %A Jorgenson, M. Torre %A Xiao, Jingfeng %A Li, Xing %A Edgar, C. %J Environmental Research Letters, Volume 16, Issue 8 %D 2021 %V 16 %N 8 %I IOP Publishing %F Watts-2021-Soil %X Abstract Soil respiration (i.e. from soils and roots) provides one of the largest global fluxes of carbon dioxide (CO 2 ) to the atmosphere and is likely to increase with warming, yet the magnitude of soil respiration from rapidly thawing Arctic-boreal regions is not well understood. To address this knowledge gap, we first compiled a new CO 2 flux database for permafrost-affected tundra and boreal ecosystems in Alaska and Northwest Canada. We then used the CO 2 database, multi-sensor satellite imagery, and random forest models to assess the regional magnitude of soil respiration. The flux database includes a new Soil Respiration Station network of chamber-based fluxes, and fluxes from eddy covariance towers. Our site-level data, spanning September 2016 to August 2017, revealed that the largest soil respiration emissions occurred during the summer (June–August) and that summer fluxes were higher in boreal sites (1.87 \pm 0.67 g CO 2 –C m −2 d −1 ) relative to tundra (0.94 \pm 0.4 g CO 2 –C m −2 d −1 ). We also observed considerable emissions (boreal: 0.24 \pm 0.2 g CO 2 –C m −2 d −1 ; tundra: 0.18 \pm 0.16 g CO 2 –C m −2 d −1 ) from soils during the winter (November–March) despite frozen surface conditions. Our model estimates indicated an annual region-wide loss from soil respiration of 591 \pm 120 Tg CO 2 –C during the 2016–2017 period. Summer months contributed to 58% of the regional soil respiration, winter months contributed to 15%, and the shoulder months contributed to 27%. In total, soil respiration offset 54% of annual gross primary productivity (GPP) across the study domain. We also found that in tundra environments, transitional tundra/boreal ecotones, and in landscapes recently affected by fire, soil respiration often exceeded GPP, resulting in a net annual source of CO 2 to the atmosphere. As this region continues to warm, soil respiration may increasingly offset GPP, further amplifying global climate change. %R 10.1088/1748-9326/ac1222 %U https://gwf-uwaterloo.github.io/gwf-publications/G21-101001 %U https://doi.org/10.1088/1748-9326/ac1222 %P 084051
Markdown (Informal)
[Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada](https://gwf-uwaterloo.github.io/gwf-publications/G21-101001) (Watts et al., GWF 2021)
- Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada (Watts et al., GWF 2021)
ACL
- Jennifer D. Watts, Susan M. Natali, C. Minions, D. A. Risk, Kyle A. Arndt, Donatella Zona, Eugénie Euskirchen, A. V. Rocha, Oliver Sonnentag, Manuel Helbig, Aram Kalhori, W. C. Oechel, Hiroki Ikawa, Masahito Ueyama, Rikie Suzuki, Hideki Kobayashi, Gerardo Celis, Edward A. G. Schuur, Elyn Humphreys, et al.. 2021. Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada. Environmental Research Letters, Volume 16, Issue 8, 16(8):084051.