The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support
Saman Razavi, Anthony Jakeman, Andrea Saltelli, Clémentine Prieur, Bertrand Iooss, Emanuele Borgonovo, Elmar Plischke, Samuele Lo Piano, Takuya Iwanaga, William E. Becker, Stefano Tarantola, Joseph H. A. Guillaume, John Davis Jakeman, Hoshin Gupta, Nicola Melillo, Giovanni Rabitti, Vincent Chabridon, Qingyun Duan, Xifu Sun, Stefán Thor Smith, Razi Sheikholeslami, Nasim Hosseini, Masoud Asadzadeh, Arnald Puy, Sergei Kucherenko, Holger R. Maier
Abstract
Sensitivity analysis (SA) is en route to becoming an integral part of mathematical modeling. The tremendous potential benefits of SA are, however, yet to be fully realized, both for advancing mechanistic and data-driven modeling of human and natural systems, and in support of decision making. In this perspective paper, a multidisciplinary group of researchers and practitioners revisit the current status of SA, and outline research challenges in regard to both theoretical frameworks and their applications to solve real-world problems. Six areas are discussed that warrant further attention, including (1) structuring and standardizing SA as a discipline, (2) realizing the untapped potential of SA for systems modeling, (3) addressing the computational burden of SA, (4) progressing SA in the context of machine learning, (5) clarifying the relationship and role of SA to uncertainty quantification, and (6) evolving the use of SA in support of decision making. An outlook for the future of SA is provided that underlines how SA must underpin a wide variety of activities to better serve science and society. • Sensitivity analysis (SA) should be promoted as an independent discipline. • Several grand challenges hinder full realization of the benefits of SA. • The potential of SA for systems modeling & machine learning is untapped. • New prospects exist for SA to support uncertainty quantification & decision making. • Coordination rather than consensus is key to cross-fertilize new ideas.- Cite:
- Saman Razavi, Anthony Jakeman, Andrea Saltelli, Clémentine Prieur, Bertrand Iooss, Emanuele Borgonovo, Elmar Plischke, Samuele Lo Piano, Takuya Iwanaga, William E. Becker, Stefano Tarantola, Joseph H. A. Guillaume, John Davis Jakeman, Hoshin Gupta, Nicola Melillo, Giovanni Rabitti, Vincent Chabridon, Qingyun Duan, Xifu Sun, et al.. 2021. The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support. Environmental Modelling & Software, Volume 137, 137:104954.
- Copy Citation:
Export citation
@article{Razavi-2021-The, title = "The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support", author = "Razavi, Saman and Jakeman, Anthony and Saltelli, Andrea and Prieur, Cl{\'e}mentine and Iooss, Bertrand and Borgonovo, Emanuele and Plischke, Elmar and Piano, Samuele Lo and Iwanaga, Takuya and Becker, William E. and Tarantola, Stefano and Guillaume, Joseph H. A. and Jakeman, John Davis and Gupta, Hoshin and Melillo, Nicola and Rabitti, Giovanni and Chabridon, Vincent and Duan, Qingyun and Sun, Xifu and Smith, Stef{\'a}n Thor and Sheikholeslami, Razi and Hosseini, Nasim and Asadzadeh, Masoud and Puy, Arnald and Kucherenko, Sergei and Maier, Holger R.", journal = "Environmental Modelling {\&} Software, Volume 137", volume = "137", year = "2021", publisher = "Elsevier BV", url = "https://gwf-uwaterloo.github.io/gwf-publications/G21-147001", doi = "10.1016/j.envsoft.2020.104954", pages = "104954", abstract = "Sensitivity analysis (SA) is en route to becoming an integral part of mathematical modeling. The tremendous potential benefits of SA are, however, yet to be fully realized, both for advancing mechanistic and data-driven modeling of human and natural systems, and in support of decision making. In this perspective paper, a multidisciplinary group of researchers and practitioners revisit the current status of SA, and outline research challenges in regard to both theoretical frameworks and their applications to solve real-world problems. Six areas are discussed that warrant further attention, including (1) structuring and standardizing SA as a discipline, (2) realizing the untapped potential of SA for systems modeling, (3) addressing the computational burden of SA, (4) progressing SA in the context of machine learning, (5) clarifying the relationship and role of SA to uncertainty quantification, and (6) evolving the use of SA in support of decision making. An outlook for the future of SA is provided that underlines how SA must underpin a wide variety of activities to better serve science and society. {\mbox{$\bullet$}} Sensitivity analysis (SA) should be promoted as an independent discipline. {\mbox{$\bullet$}} Several grand challenges hinder full realization of the benefits of SA. {\mbox{$\bullet$}} The potential of SA for systems modeling {\&} machine learning is untapped. {\mbox{$\bullet$}} New prospects exist for SA to support uncertainty quantification {\&} decision making. {\mbox{$\bullet$}} Coordination rather than consensus is key to cross-fertilize new ideas.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="Razavi-2021-The"> <titleInfo> <title>The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support</title> </titleInfo> <name type="personal"> <namePart type="given">Saman</namePart> <namePart type="family">Razavi</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Anthony</namePart> <namePart type="family">Jakeman</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Andrea</namePart> <namePart type="family">Saltelli</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Clémentine</namePart> <namePart type="family">Prieur</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Bertrand</namePart> <namePart type="family">Iooss</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Emanuele</namePart> <namePart type="family">Borgonovo</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Elmar</namePart> <namePart type="family">Plischke</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Samuele</namePart> <namePart type="given">Lo</namePart> <namePart type="family">Piano</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Takuya</namePart> <namePart type="family">Iwanaga</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">William</namePart> <namePart type="given">E</namePart> <namePart type="family">Becker</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Stefano</namePart> <namePart type="family">Tarantola</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Joseph</namePart> <namePart type="given">H</namePart> <namePart type="given">A</namePart> <namePart type="family">Guillaume</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">John</namePart> <namePart type="given">Davis</namePart> <namePart type="family">Jakeman</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hoshin</namePart> <namePart type="family">Gupta</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Nicola</namePart> <namePart type="family">Melillo</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Giovanni</namePart> <namePart type="family">Rabitti</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Vincent</namePart> <namePart type="family">Chabridon</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Qingyun</namePart> <namePart type="family">Duan</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Xifu</namePart> <namePart type="family">Sun</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Stefán</namePart> <namePart type="given">Thor</namePart> <namePart type="family">Smith</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Razi</namePart> <namePart type="family">Sheikholeslami</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Nasim</namePart> <namePart type="family">Hosseini</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Masoud</namePart> <namePart type="family">Asadzadeh</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Arnald</namePart> <namePart type="family">Puy</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sergei</namePart> <namePart type="family">Kucherenko</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Holger</namePart> <namePart type="given">R</namePart> <namePart type="family">Maier</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2021</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <genre authority="bibutilsgt">journal article</genre> <relatedItem type="host"> <titleInfo> <title>Environmental Modelling & Software, Volume 137</title> </titleInfo> <originInfo> <issuance>continuing</issuance> <publisher>Elsevier BV</publisher> </originInfo> <genre authority="marcgt">periodical</genre> <genre authority="bibutilsgt">academic journal</genre> </relatedItem> <abstract>Sensitivity analysis (SA) is en route to becoming an integral part of mathematical modeling. The tremendous potential benefits of SA are, however, yet to be fully realized, both for advancing mechanistic and data-driven modeling of human and natural systems, and in support of decision making. In this perspective paper, a multidisciplinary group of researchers and practitioners revisit the current status of SA, and outline research challenges in regard to both theoretical frameworks and their applications to solve real-world problems. Six areas are discussed that warrant further attention, including (1) structuring and standardizing SA as a discipline, (2) realizing the untapped potential of SA for systems modeling, (3) addressing the computational burden of SA, (4) progressing SA in the context of machine learning, (5) clarifying the relationship and role of SA to uncertainty quantification, and (6) evolving the use of SA in support of decision making. An outlook for the future of SA is provided that underlines how SA must underpin a wide variety of activities to better serve science and society. \bullet Sensitivity analysis (SA) should be promoted as an independent discipline. \bullet Several grand challenges hinder full realization of the benefits of SA. \bullet The potential of SA for systems modeling & machine learning is untapped. \bullet New prospects exist for SA to support uncertainty quantification & decision making. \bullet Coordination rather than consensus is key to cross-fertilize new ideas.</abstract> <identifier type="citekey">Razavi-2021-The</identifier> <identifier type="doi">10.1016/j.envsoft.2020.104954</identifier> <location> <url>https://gwf-uwaterloo.github.io/gwf-publications/G21-147001</url> </location> <part> <date>2021</date> <detail type="volume"><number>137</number></detail> <detail type="page"><number>104954</number></detail> </part> </mods> </modsCollection>
%0 Journal Article %T The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support %A Razavi, Saman %A Jakeman, Anthony %A Saltelli, Andrea %A Prieur, Clémentine %A Iooss, Bertrand %A Borgonovo, Emanuele %A Plischke, Elmar %A Piano, Samuele Lo %A Iwanaga, Takuya %A Becker, William E. %A Tarantola, Stefano %A Guillaume, Joseph H. A. %A Jakeman, John Davis %A Gupta, Hoshin %A Melillo, Nicola %A Rabitti, Giovanni %A Chabridon, Vincent %A Duan, Qingyun %A Sun, Xifu %A Smith, Stefán Thor %A Sheikholeslami, Razi %A Hosseini, Nasim %A Asadzadeh, Masoud %A Puy, Arnald %A Kucherenko, Sergei %A Maier, Holger R. %J Environmental Modelling & Software, Volume 137 %D 2021 %V 137 %I Elsevier BV %F Razavi-2021-The %X Sensitivity analysis (SA) is en route to becoming an integral part of mathematical modeling. The tremendous potential benefits of SA are, however, yet to be fully realized, both for advancing mechanistic and data-driven modeling of human and natural systems, and in support of decision making. In this perspective paper, a multidisciplinary group of researchers and practitioners revisit the current status of SA, and outline research challenges in regard to both theoretical frameworks and their applications to solve real-world problems. Six areas are discussed that warrant further attention, including (1) structuring and standardizing SA as a discipline, (2) realizing the untapped potential of SA for systems modeling, (3) addressing the computational burden of SA, (4) progressing SA in the context of machine learning, (5) clarifying the relationship and role of SA to uncertainty quantification, and (6) evolving the use of SA in support of decision making. An outlook for the future of SA is provided that underlines how SA must underpin a wide variety of activities to better serve science and society. \bullet Sensitivity analysis (SA) should be promoted as an independent discipline. \bullet Several grand challenges hinder full realization of the benefits of SA. \bullet The potential of SA for systems modeling & machine learning is untapped. \bullet New prospects exist for SA to support uncertainty quantification & decision making. \bullet Coordination rather than consensus is key to cross-fertilize new ideas. %R 10.1016/j.envsoft.2020.104954 %U https://gwf-uwaterloo.github.io/gwf-publications/G21-147001 %U https://doi.org/10.1016/j.envsoft.2020.104954 %P 104954
Markdown (Informal)
[The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support](https://gwf-uwaterloo.github.io/gwf-publications/G21-147001) (Razavi et al., GWF 2021)
- The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support (Razavi et al., GWF 2021)
ACL
- Saman Razavi, Anthony Jakeman, Andrea Saltelli, Clémentine Prieur, Bertrand Iooss, Emanuele Borgonovo, Elmar Plischke, Samuele Lo Piano, Takuya Iwanaga, William E. Becker, Stefano Tarantola, Joseph H. A. Guillaume, John Davis Jakeman, Hoshin Gupta, Nicola Melillo, Giovanni Rabitti, Vincent Chabridon, Qingyun Duan, Xifu Sun, et al.. 2021. The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support. Environmental Modelling & Software, Volume 137, 137:104954.