Community Surveillance of Omicron in Ontario: Wastewater-based Epidemiology Comes of Age.
Authors presented in alphabetical order:, Jos Arts, R. Stephen Brown, David Bulir, Trevor C. Charles, Christopher T. DeGroot, Robert Delatolla, Jean‐Paul Desaulniers, Elizabeth A. Edwards, Meghan Fuzzen, Kimberley Gilbride, Jodi Gilchrist, Lawrence Goodridge, Tyson E. Graber, Marc Habash, Peter Jüni, Andrea E. Kirkwood, James Knockleby, Christopher J. Kyle, Chrystal Landgraff, Chand S. Mangat, Douglas Manuel, R. Michael L. McKay, Edgard M. Mejia, Aleksandra Mloszewska, Banu Örmeci, Claire J. Oswald, Sarah Jane Payne, Hui Peng, Shelley Peterson, Art F. Y. Poon, Mark R. Servos, Denina Simmons, Jianxian Sun, Minqing Ivy Yang, Gustavo Ybazeta
Abstract
Abstract Wastewater-based surveillance of SARS-CoV-2 RNA has been implemented at building, neighbourhood, and city levels throughout the world. Implementation strategies and analysis methods differ, but they all aim to provide rapid and reliable information about community COVID-19 health states. A viable and sustainable SARS-CoV-2 surveillance network must not only provide reliable and timely information about COVID-19 trends, but also provide for scalability as well as accurate detection of known or unknown emerging variants. Emergence of the SARS-CoV-2 variant of concern Omicron in late Fall 2021 presented an excellent opportunity to benchmark individual and aggregated data outputs of the Ontario Wastewater Surveillance Initiative in Canada; this public health-integrated surveillance network monitors wastewaters from over 10 million people across major population centres of the province. We demonstrate that this coordinated approach provides excellent situational awareness, comparing favourably with traditional clinical surveillance measures. Thus, aggregated datasets compiled from multiple wastewater-based surveillance nodes can provide sufficient sensitivity (i.e., early indication of increasing and decreasing incidence of SARS-CoV-2) and specificity (i.e., allele frequency estimation of emerging variants) with which to make informed public health decisions at regional- and state-levels.- Cite:
- Authors presented in alphabetical order:, Jos Arts, R. Stephen Brown, David Bulir, Trevor C. Charles, Christopher T. DeGroot, Robert Delatolla, Jean‐Paul Desaulniers, Elizabeth A. Edwards, Meghan Fuzzen, Kimberley Gilbride, Jodi Gilchrist, Lawrence Goodridge, Tyson E. Graber, Marc Habash, Peter Jüni, Andrea E. Kirkwood, James Knockleby, Christopher J. Kyle, et al.. 2022. Community Surveillance of Omicron in Ontario: Wastewater-based Epidemiology Comes of Age..
- Copy Citation:
Export citation
@article{order:-2022-Community, title = "Community Surveillance of Omicron in Ontario: Wastewater-based Epidemiology Comes of Age.", author = {order:, Authors presented in alphabetical and Arts, Jos and Brown, R. Stephen and Bulir, David and Charles, Trevor C. and DeGroot, Christopher T. and Delatolla, Robert and Desaulniers, Jean‐Paul and Edwards, Elizabeth A. and Fuzzen, Meghan and Gilbride, Kimberley and Gilchrist, Jodi and Goodridge, Lawrence and Graber, Tyson E. and Habash, Marc and J{\"u}ni, Peter and Kirkwood, Andrea E. and Knockleby, James and Kyle, Christopher J. and Landgraff, Chrystal and Mangat, Chand S. and Manuel, Douglas and McKay, R. Michael L. and Mejia, Edgard M. and Mloszewska, Aleksandra and {\"O}rmeci, Banu and Oswald, Claire J. and Payne, Sarah Jane and Peng, Hui and Peterson, Shelley and Poon, Art F. Y. and Servos, Mark R. and Simmons, Denina and Sun, Jianxian and Yang, Minqing Ivy and Ybazeta, Gustavo}, journal = "", year = "2022", publisher = "Research Square Platform LLC", url = "https://gwf-uwaterloo.github.io/gwf-publications/G22-18001", doi = "10.21203/rs.3.rs-1439969/v2", abstract = "Abstract Wastewater-based surveillance of SARS-CoV-2 RNA has been implemented at building, neighbourhood, and city levels throughout the world. Implementation strategies and analysis methods differ, but they all aim to provide rapid and reliable information about community COVID-19 health states. A viable and sustainable SARS-CoV-2 surveillance network must not only provide reliable and timely information about COVID-19 trends, but also provide for scalability as well as accurate detection of known or unknown emerging variants. Emergence of the SARS-CoV-2 variant of concern Omicron in late Fall 2021 presented an excellent opportunity to benchmark individual and aggregated data outputs of the Ontario Wastewater Surveillance Initiative in Canada; this public health-integrated surveillance network monitors wastewaters from over 10 million people across major population centres of the province. We demonstrate that this coordinated approach provides excellent situational awareness, comparing favourably with traditional clinical surveillance measures. Thus, aggregated datasets compiled from multiple wastewater-based surveillance nodes can provide sufficient sensitivity (i.e., early indication of increasing and decreasing incidence of SARS-CoV-2) and specificity (i.e., allele frequency estimation of emerging variants) with which to make informed public health decisions at regional- and state-levels.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="order:-2022-Community"> <titleInfo> <title>Community Surveillance of Omicron in Ontario: Wastewater-based Epidemiology Comes of Age.</title> </titleInfo> <name type="personal"> <namePart type="given">Authors</namePart> <namePart type="given">presented</namePart> <namePart type="given">in</namePart> <namePart type="given">alphabetical</namePart> <namePart type="family">order:</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jos</namePart> <namePart type="family">Arts</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">R</namePart> <namePart type="given">Stephen</namePart> <namePart type="family">Brown</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">David</namePart> <namePart type="family">Bulir</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Trevor</namePart> <namePart type="given">C</namePart> <namePart type="family">Charles</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christopher</namePart> <namePart type="given">T</namePart> <namePart type="family">DeGroot</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Robert</namePart> <namePart type="family">Delatolla</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jean‐Paul</namePart> <namePart type="family">Desaulniers</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Elizabeth</namePart> <namePart type="given">A</namePart> <namePart type="family">Edwards</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Meghan</namePart> <namePart type="family">Fuzzen</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Kimberley</namePart> <namePart type="family">Gilbride</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jodi</namePart> <namePart type="family">Gilchrist</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Lawrence</namePart> <namePart type="family">Goodridge</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Tyson</namePart> <namePart type="given">E</namePart> <namePart type="family">Graber</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marc</namePart> <namePart type="family">Habash</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Peter</namePart> <namePart type="family">Jüni</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Andrea</namePart> <namePart type="given">E</namePart> <namePart type="family">Kirkwood</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">James</namePart> <namePart type="family">Knockleby</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christopher</namePart> <namePart type="given">J</namePart> <namePart type="family">Kyle</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Chrystal</namePart> <namePart type="family">Landgraff</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Chand</namePart> <namePart type="given">S</namePart> <namePart type="family">Mangat</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Douglas</namePart> <namePart type="family">Manuel</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">R</namePart> <namePart type="given">Michael</namePart> <namePart type="given">L</namePart> <namePart type="family">McKay</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Edgard</namePart> <namePart type="given">M</namePart> <namePart type="family">Mejia</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Aleksandra</namePart> <namePart type="family">Mloszewska</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Banu</namePart> <namePart type="family">Örmeci</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Claire</namePart> <namePart type="given">J</namePart> <namePart type="family">Oswald</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sarah</namePart> <namePart type="given">Jane</namePart> <namePart type="family">Payne</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hui</namePart> <namePart type="family">Peng</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Shelley</namePart> <namePart type="family">Peterson</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Art</namePart> <namePart type="given">F</namePart> <namePart type="given">Y</namePart> <namePart type="family">Poon</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mark</namePart> <namePart type="given">R</namePart> <namePart type="family">Servos</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Denina</namePart> <namePart type="family">Simmons</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jianxian</namePart> <namePart type="family">Sun</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Minqing</namePart> <namePart type="given">Ivy</namePart> <namePart type="family">Yang</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Gustavo</namePart> <namePart type="family">Ybazeta</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2022</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <genre authority="bibutilsgt">journal article</genre> <relatedItem type="host"> <titleInfo> <title/> </titleInfo> <originInfo> <issuance>continuing</issuance> <publisher>Research Square Platform LLC</publisher> </originInfo> <genre authority="marcgt">periodical</genre> <genre authority="bibutilsgt">academic journal</genre> </relatedItem> <abstract>Abstract Wastewater-based surveillance of SARS-CoV-2 RNA has been implemented at building, neighbourhood, and city levels throughout the world. Implementation strategies and analysis methods differ, but they all aim to provide rapid and reliable information about community COVID-19 health states. A viable and sustainable SARS-CoV-2 surveillance network must not only provide reliable and timely information about COVID-19 trends, but also provide for scalability as well as accurate detection of known or unknown emerging variants. Emergence of the SARS-CoV-2 variant of concern Omicron in late Fall 2021 presented an excellent opportunity to benchmark individual and aggregated data outputs of the Ontario Wastewater Surveillance Initiative in Canada; this public health-integrated surveillance network monitors wastewaters from over 10 million people across major population centres of the province. We demonstrate that this coordinated approach provides excellent situational awareness, comparing favourably with traditional clinical surveillance measures. Thus, aggregated datasets compiled from multiple wastewater-based surveillance nodes can provide sufficient sensitivity (i.e., early indication of increasing and decreasing incidence of SARS-CoV-2) and specificity (i.e., allele frequency estimation of emerging variants) with which to make informed public health decisions at regional- and state-levels.</abstract> <identifier type="citekey">order:-2022-Community</identifier> <identifier type="doi">10.21203/rs.3.rs-1439969/v2</identifier> <location> <url>https://gwf-uwaterloo.github.io/gwf-publications/G22-18001</url> </location> <part> <date>2022</date> </part> </mods> </modsCollection>
%0 Journal Article %T Community Surveillance of Omicron in Ontario: Wastewater-based Epidemiology Comes of Age. %A order:, Authors presented in alphabetical %A Arts, Jos %A Brown, R. Stephen %A Bulir, David %A Charles, Trevor C. %A DeGroot, Christopher T. %A Delatolla, Robert %A Desaulniers, Jean‐Paul %A Edwards, Elizabeth A. %A Fuzzen, Meghan %A Gilbride, Kimberley %A Gilchrist, Jodi %A Goodridge, Lawrence %A Graber, Tyson E. %A Habash, Marc %A Jüni, Peter %A Kirkwood, Andrea E. %A Knockleby, James %A Kyle, Christopher J. %A Landgraff, Chrystal %A Mangat, Chand S. %A Manuel, Douglas %A McKay, R. Michael L. %A Mejia, Edgard M. %A Mloszewska, Aleksandra %A Örmeci, Banu %A Oswald, Claire J. %A Payne, Sarah Jane %A Peng, Hui %A Peterson, Shelley %A Poon, Art F. Y. %A Servos, Mark R. %A Simmons, Denina %A Sun, Jianxian %A Yang, Minqing Ivy %A Ybazeta, Gustavo %D 2022 %I Research Square Platform LLC %F order:-2022-Community %X Abstract Wastewater-based surveillance of SARS-CoV-2 RNA has been implemented at building, neighbourhood, and city levels throughout the world. Implementation strategies and analysis methods differ, but they all aim to provide rapid and reliable information about community COVID-19 health states. A viable and sustainable SARS-CoV-2 surveillance network must not only provide reliable and timely information about COVID-19 trends, but also provide for scalability as well as accurate detection of known or unknown emerging variants. Emergence of the SARS-CoV-2 variant of concern Omicron in late Fall 2021 presented an excellent opportunity to benchmark individual and aggregated data outputs of the Ontario Wastewater Surveillance Initiative in Canada; this public health-integrated surveillance network monitors wastewaters from over 10 million people across major population centres of the province. We demonstrate that this coordinated approach provides excellent situational awareness, comparing favourably with traditional clinical surveillance measures. Thus, aggregated datasets compiled from multiple wastewater-based surveillance nodes can provide sufficient sensitivity (i.e., early indication of increasing and decreasing incidence of SARS-CoV-2) and specificity (i.e., allele frequency estimation of emerging variants) with which to make informed public health decisions at regional- and state-levels. %R 10.21203/rs.3.rs-1439969/v2 %U https://gwf-uwaterloo.github.io/gwf-publications/G22-18001 %U https://doi.org/10.21203/rs.3.rs-1439969/v2
Markdown (Informal)
[Community Surveillance of Omicron in Ontario: Wastewater-based Epidemiology Comes of Age.](https://gwf-uwaterloo.github.io/gwf-publications/G22-18001) (order: et al., GWF 2022)
- Community Surveillance of Omicron in Ontario: Wastewater-based Epidemiology Comes of Age. (order: et al., GWF 2022)
ACL
- Authors presented in alphabetical order:, Jos Arts, R. Stephen Brown, David Bulir, Trevor C. Charles, Christopher T. DeGroot, Robert Delatolla, Jean‐Paul Desaulniers, Elizabeth A. Edwards, Meghan Fuzzen, Kimberley Gilbride, Jodi Gilchrist, Lawrence Goodridge, Tyson E. Graber, Marc Habash, Peter Jüni, Andrea E. Kirkwood, James Knockleby, Christopher J. Kyle, et al.. 2022. Community Surveillance of Omicron in Ontario: Wastewater-based Epidemiology Comes of Age..