Investigating the Effect of Lake Ice Properties on Multifrequency Backscatter Using the Snow Microwave Radiative Transfer Model

Justin Murfitt, Claude R. Duguay, Ghislain Picard, Grant E. Gunn


Abstract
Recent investigations using polarimetric decomposition and numerical models have helped to improve understanding of how radar signals interact with lake ice. However, further research is needed on how radar signals are impacted by varying lake ice properties. Radiative transfer models provide one method of improving this understanding. These are the first published experiments using the Snow Microwave Radiative Transfer (SMRT) model to investigate the response of different imaging SAR frequencies (L, C, and X-band) at HH and VV polarizations using various incidence angles (20°, 30°, and 40°) to changes in ice thickness, porosity, bubble radius, and ice-water interface roughness. This is also the first use of SMRT in combination with a thermodynamic lake ice model. Experiments were for a lake with tubular bubbles and one without tubular bubbles under difference scenarios. Analysis of the backscatter response to different properties indicate that increasing ice thickness and layer porosity have little impact on backscatter from lake ice. X-band backscatter shows increased response to surface ice layer bubble radius; however, this was limited for other frequencies except at shallower incidence angles (40°). All three frequencies display the largest response to increasing RMS height at the ice-water interface, which supports surface scattering at the ice-water interface as being the dominant scattering mechanism. These results demonstrate that SMRT is a valuable tool for understanding the response of SAR data to changes in freshwater lake ice properties and could be used in the development of inversion models.
Cite:
Justin Murfitt, Claude R. Duguay, Ghislain Picard, and Grant E. Gunn. 2022. Investigating the Effect of Lake Ice Properties on Multifrequency Backscatter Using the Snow Microwave Radiative Transfer Model. IEEE Transactions on Geoscience and Remote Sensing, Volume 60, 60:1–23.
Copy Citation: