Pan‐Arctic soil moisture control on tundra carbon sequestration and plant productivity
Donatella Zona, Peter M. Lafleur, Koen Hufkens, Beniamino Gioli, Barbara Bailey, George Burba, Eugénie Euskirchen, Jennifer D. Watts, Kyle A. Arndt, Mary Farina, J. S. Kimball, Martin Heimann, Mathias Goeckede, Martijn Pallandt, Torben R. Christensen, Mikhail Mastepanov, Efrén López‐Blanco, A.J. Dolman, R. Commane, Charles E. Miller, Josh Hashemi, Lars Kutzbach, David Holl, Julia Boike, Christian Wille, Torsten Sachs, Aram Kalhori, Elyn Humphreys, Oliver Sonnentag, Gesa Meyer, Gabriel Gosselin, Philip Marsh, Walter C. Oechel
Abstract
Long-term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high-latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long-term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site-years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer.- Cite:
- Donatella Zona, Peter M. Lafleur, Koen Hufkens, Beniamino Gioli, Barbara Bailey, George Burba, Eugénie Euskirchen, Jennifer D. Watts, Kyle A. Arndt, Mary Farina, J. S. Kimball, Martin Heimann, Mathias Goeckede, Martijn Pallandt, Torben R. Christensen, Mikhail Mastepanov, Efrén López‐Blanco, A.J. Dolman, R. Commane, et al.. 2023. Pan‐Arctic soil moisture control on tundra carbon sequestration and plant productivity. Global Change Biology, Volume 29, Issue 5, 29(5):1267–1281.
- Copy Citation:
Export citation
@article{Zona-2023-Pan‐Arctic, title = "Pan‐Arctic soil moisture control on tundra carbon sequestration and plant productivity", author = "Zona, Donatella and Lafleur, Peter M. and Hufkens, Koen and Gioli, Beniamino and Bailey, Barbara and Burba, George and Euskirchen, Eug{\'e}nie and Watts, Jennifer D. and Arndt, Kyle A. and Farina, Mary and Kimball, J. S. and Heimann, Martin and Goeckede, Mathias and Pallandt, Martijn and Christensen, Torben R. and Mastepanov, Mikhail and L{\'o}pez‐Blanco, Efr{\'e}n and Dolman, A.J. and Commane, R. and Miller, Charles E. and Hashemi, Josh and Kutzbach, Lars and Holl, David and Boike, Julia and Wille, Christian and Sachs, Torsten and Kalhori, Aram and Humphreys, Elyn and Sonnentag, Oliver and Meyer, Gesa and Gosselin, Gabriel and Marsh, Philip and Oechel, Walter C.", journal = "Global Change Biology, Volume 29, Issue 5", volume = "29", number = "5", year = "2023", publisher = "Wiley", url = "https://gwf-uwaterloo.github.io/gwf-publications/G23-87001", doi = "10.1111/gcb.16487", pages = "1267--1281", abstract = "Long-term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high-latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long-term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site-years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="Zona-2023-Pan‐Arctic"> <titleInfo> <title>Pan‐Arctic soil moisture control on tundra carbon sequestration and plant productivity</title> </titleInfo> <name type="personal"> <namePart type="given">Donatella</namePart> <namePart type="family">Zona</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Peter</namePart> <namePart type="given">M</namePart> <namePart type="family">Lafleur</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Koen</namePart> <namePart type="family">Hufkens</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Beniamino</namePart> <namePart type="family">Gioli</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Barbara</namePart> <namePart type="family">Bailey</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">George</namePart> <namePart type="family">Burba</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Eugénie</namePart> <namePart type="family">Euskirchen</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jennifer</namePart> <namePart type="given">D</namePart> <namePart type="family">Watts</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Kyle</namePart> <namePart type="given">A</namePart> <namePart type="family">Arndt</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mary</namePart> <namePart type="family">Farina</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">J</namePart> <namePart type="given">S</namePart> <namePart type="family">Kimball</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Martin</namePart> <namePart type="family">Heimann</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mathias</namePart> <namePart type="family">Goeckede</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Martijn</namePart> <namePart type="family">Pallandt</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Torben</namePart> <namePart type="given">R</namePart> <namePart type="family">Christensen</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mikhail</namePart> <namePart type="family">Mastepanov</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Efrén</namePart> <namePart type="family">López‐Blanco</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">A</namePart> <namePart type="given">J</namePart> <namePart type="family">Dolman</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">R</namePart> <namePart type="family">Commane</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Charles</namePart> <namePart type="given">E</namePart> <namePart type="family">Miller</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Josh</namePart> <namePart type="family">Hashemi</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Lars</namePart> <namePart type="family">Kutzbach</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">David</namePart> <namePart type="family">Holl</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Julia</namePart> <namePart type="family">Boike</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christian</namePart> <namePart type="family">Wille</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Torsten</namePart> <namePart type="family">Sachs</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Aram</namePart> <namePart type="family">Kalhori</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Elyn</namePart> <namePart type="family">Humphreys</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Oliver</namePart> <namePart type="family">Sonnentag</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Gesa</namePart> <namePart type="family">Meyer</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Gabriel</namePart> <namePart type="family">Gosselin</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Philip</namePart> <namePart type="family">Marsh</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Walter</namePart> <namePart type="given">C</namePart> <namePart type="family">Oechel</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2023</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <genre authority="bibutilsgt">journal article</genre> <relatedItem type="host"> <titleInfo> <title>Global Change Biology, Volume 29, Issue 5</title> </titleInfo> <originInfo> <issuance>continuing</issuance> <publisher>Wiley</publisher> </originInfo> <genre authority="marcgt">periodical</genre> <genre authority="bibutilsgt">academic journal</genre> </relatedItem> <abstract>Long-term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high-latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long-term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site-years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer.</abstract> <identifier type="citekey">Zona-2023-Pan‐Arctic</identifier> <identifier type="doi">10.1111/gcb.16487</identifier> <location> <url>https://gwf-uwaterloo.github.io/gwf-publications/G23-87001</url> </location> <part> <date>2023</date> <detail type="volume"><number>29</number></detail> <detail type="issue"><number>5</number></detail> <extent unit="page"> <start>1267</start> <end>1281</end> </extent> </part> </mods> </modsCollection>
%0 Journal Article %T Pan‐Arctic soil moisture control on tundra carbon sequestration and plant productivity %A Zona, Donatella %A Lafleur, Peter M. %A Hufkens, Koen %A Gioli, Beniamino %A Bailey, Barbara %A Burba, George %A Euskirchen, Eugénie %A Watts, Jennifer D. %A Arndt, Kyle A. %A Farina, Mary %A Kimball, J. S. %A Heimann, Martin %A Goeckede, Mathias %A Pallandt, Martijn %A Christensen, Torben R. %A Mastepanov, Mikhail %A López‐Blanco, Efrén %A Dolman, A. J. %A Commane, R. %A Miller, Charles E. %A Hashemi, Josh %A Kutzbach, Lars %A Holl, David %A Boike, Julia %A Wille, Christian %A Sachs, Torsten %A Kalhori, Aram %A Humphreys, Elyn %A Sonnentag, Oliver %A Meyer, Gesa %A Gosselin, Gabriel %A Marsh, Philip %A Oechel, Walter C. %J Global Change Biology, Volume 29, Issue 5 %D 2023 %V 29 %N 5 %I Wiley %F Zona-2023-Pan‐Arctic %X Long-term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high-latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long-term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site-years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer. %R 10.1111/gcb.16487 %U https://gwf-uwaterloo.github.io/gwf-publications/G23-87001 %U https://doi.org/10.1111/gcb.16487 %P 1267-1281
Markdown (Informal)
[Pan‐Arctic soil moisture control on tundra carbon sequestration and plant productivity](https://gwf-uwaterloo.github.io/gwf-publications/G23-87001) (Zona et al., GWF 2023)
- Pan‐Arctic soil moisture control on tundra carbon sequestration and plant productivity (Zona et al., GWF 2023)
ACL
- Donatella Zona, Peter M. Lafleur, Koen Hufkens, Beniamino Gioli, Barbara Bailey, George Burba, Eugénie Euskirchen, Jennifer D. Watts, Kyle A. Arndt, Mary Farina, J. S. Kimball, Martin Heimann, Mathias Goeckede, Martijn Pallandt, Torben R. Christensen, Mikhail Mastepanov, Efrén López‐Blanco, A.J. Dolman, R. Commane, et al.. 2023. Pan‐Arctic soil moisture control on tundra carbon sequestration and plant productivity. Global Change Biology, Volume 29, Issue 5, 29(5):1267–1281.