Amanda Lee Ronnquist


2021

DOI bib
Beaver dams: How structure, flow state, and landscape setting regulate water storage and release
Amanda Lee Ronnquist, Cherie J. Westbrook
Science of The Total Environment, Volume 785

Beaver ( Castor canadensis and Castor fiber ) are regarded widely as ecosystem engineers and the dams they create are well-known for their ability to drastically alter the hydrology of rivers. As a result, beaver are increasingly being included in green infrastructure practices to combat the effects of climate change and enhance ecosystem resilience. Both drought and flood mitigation capabilities have been observed in watersheds with beaver dam structures; however, how dams possess contrasting mitigation abilities is not fully understood since most studies neglect to acknowledge variation in beaver dam structures. In this study, an extensive cross-site survey of the physical and hydrologic properties of beaver dams was conducted in the Canadian Rocky Mountains in Alberta. This research aimed to improve the understanding of the hydrology of beaver dams by categorizing dams using their intrinsic properties and landscape settings to identify fundamental patterns that may be applicable across landscape types. The dam flow type classification from Woo and Waddington (1990) was evaluated in this new context and adapted to include two new flow types. The survey of intrinsic beaver dam properties revealed significant differences in dam structure across different sites. Physical differences in dam structure altered the dynamics and variance of pond storage and certain dam attributes related to the landscape setting. For instance, dam material influenced dam height and water source influenced dam length. However, a closer analysis of large rain events showed that the physical structure of dams alters seasonal dynamics of pond storage but not the response to rain events. Overall, this research shows that beaver dams can be both structurally and hydrologically very different from each other. Establishing broadly applicable classifications is vital to understanding the ecosystem resilience and mitigation services beaver dams provide. • Beaver dams in Canadian Rockies are highly diverse structurally and hydrologically. • Beaver dams can be classified by their flow state. • Dam flow state relates to dam physical structure and landscape setting. • Dam hydrological effectiveness depends on flow state. • Important implications for nature-based solutions to climate change.

2020

DOI bib
Hydrological functioning of a beaver dam sequence and regional dam persistence during an extreme rainstorm
Cherie J. Westbrook, Amanda Lee Ronnquist, Angela Bedard‐Haughn
Hydrological Processes, Volume 34, Issue 18

It is becoming increasingly popular to reintroduce beaver to streams with the hopes of restoring riparian ecosystem function or reducing some of the hydrological impacts of climate change. One of the risks of relying on beaver to enhance ecosystem water storage is that their dams are reportedly more apt to fail during floods which can exacerbate flood severity. Missing are observations of beaver dam persistence and water storage capacity during floods, information needed to evaluate the risk of relying on beaver as a nature-based flood solution. A June rainstorm in 2013 triggered the largest recorded flood in the Canadian Rocky Mountains west of Calgary, Alberta. We opportunistically recorded hydrometric data during the rainfall event at a beaver-occupied peatland that has been studied for more than a decade. We supplemented these observations with a post-event regional analysis of beaver dam persistence. Results do not support two long-held hypotheses—that beaver ponds have limited flood attenuation capacity and commonly fail during large flood events. Instead we found that 68% of the beaver dam cascade systems across the region were intact or partially intact after the event. Pond fullness, in addition to the magnitude of the water-sediment surge, emerged as important factors in determining the structural fate of dam cascade sequences. Beaver ponds at the instrumented site quickly filled in the first few hours of the rain event and levels were dynamic during the event. Water storage offered by the beaver ponds, even ones that failed, delayed downstream floodwater transmission. Study findings have important implications for reintroducing beaver as part of nature-based restoration and climate change adaptation strategies.