Andrea Saltelli


2021

DOI bib
The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support
Saman Razavi, Anthony Jakeman, Andrea Saltelli, Clémentine Prieur, Bertrand Iooss, Emanuele Borgonovo, Elmar Plischke, Samuele Lo Piano, Takuya Iwanaga, William E. Becker, Stefano Tarantola, Joseph H. A. Guillaume, John Davis Jakeman, Hoshin Gupta, Nicola Melillo, Giovanni Rabitti, Vincent Chabridon, Qingyun Duan, Xifu Sun, Stefán Thor Smith, Razi Sheikholeslami, Nasim Hosseini, Masoud Asadzadeh, Arnald Puy, Sergei Kucherenko, Holger R. Maier
Environmental Modelling & Software, Volume 137

Sensitivity analysis (SA) is en route to becoming an integral part of mathematical modeling. The tremendous potential benefits of SA are, however, yet to be fully realized, both for advancing mechanistic and data-driven modeling of human and natural systems, and in support of decision making. In this perspective paper, a multidisciplinary group of researchers and practitioners revisit the current status of SA, and outline research challenges in regard to both theoretical frameworks and their applications to solve real-world problems. Six areas are discussed that warrant further attention, including (1) structuring and standardizing SA as a discipline, (2) realizing the untapped potential of SA for systems modeling, (3) addressing the computational burden of SA, (4) progressing SA in the context of machine learning, (5) clarifying the relationship and role of SA to uncertainty quantification, and (6) evolving the use of SA in support of decision making. An outlook for the future of SA is provided that underlines how SA must underpin a wide variety of activities to better serve science and society. • Sensitivity analysis (SA) should be promoted as an independent discipline. • Several grand challenges hinder full realization of the benefits of SA. • The potential of SA for systems modeling & machine learning is untapped. • New prospects exist for SA to support uncertainty quantification & decision making. • Coordination rather than consensus is key to cross-fertilize new ideas.

DOI bib
Sensitivity analysis: A discipline coming of age
Andrea Saltelli, Anthony J. Jakeman, Saman Razavi, Qingfeng Wu
Environmental Modelling & Software, Volume 146

Sensitivity analysis (SA) as a ‘formal’ and ‘standard’ component of scientific development and policy support is relatively young. Many researchers and practitioners from a wide range of disciplines have contributed to SA over the last three decades, and the SAMO (sensitivity analysis of model output) conferences, since 1995, have been the primary driver of breeding a community culture in this heterogeneous population. Now, SA is evolving into a mature and independent field of science, indeed a discipline with emerging applications extending well into new areas such as data science and machine learning. At this growth stage, the present editorial leads a special issue consisting of one Position Paper on “ The future of sensitivity analysis ” and 11 research papers on “ Sensitivity analysis for environmental modelling ” published in Environmental Modelling & Software in 2020–21. • Advances of science and policy has deep but informal roots in sensitivity analysis. • Modern sensitivity analysis is now evolving into a formal and independent discipline. • New areas such data science and machine learning benefit from sensitivity analysis. • Challenges, methodological progress, and outlook are outlined in this special issue.