Andreas Colliander


2022

DOI bib
Evaluation of SMAP Soil Moisture Retrieval Accuracy Over a Boreal Forest Region
Jaison Thomas Ambadan, Heather C. MacRae, Andreas Colliander, Erica Tetlock, Warren Helgason, Ze’ev Gedalof, Aaron Berg
IEEE Transactions on Geoscience and Remote Sensing, Volume 60

Estimating soil moisture (SM) over the circumpolar boreal forest would have numerous applications including wildfire risk detection, and weather prediction. Evaluation of satellite derived SM retrievals in boreal ecoregions is hindered by available in situ SM observation networks. To address this, an SM monitoring network was established in a boreal forest region in Saskatchewan, Canada. The network is unique as there are no other SM network of similar size in the boreal forest. The network consisted of 17 SM stations within a single Soil Moisture Active Passive (SMAP) satellite observation pixel ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$33\times 33$ </tex-math></inline-formula> km). We present an analysis of the sensitivity and accuracy of SMAP SM products in a boreal forest environment over a two-year period in 2018 and 2019. Results show current SMAP radiometer-based L2 SM products have higher correlation with the in situ lower mineral layer SM than with the top organic layer, although the overall correlation is low. Correlations between in situ mineral layer SM and SMAP brightness-temperature (TB) products are higher than those observed with the SMAP SM product, suggesting current SMAP SM retrieval from the TB using the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\tau $ </tex-math></inline-formula> – <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\omega $ </tex-math></inline-formula> model introduces large uncertainties in the SM estimation, possibly from uncertain vegetation and surface parameters in the retrieval model. Results show SM can be retrieved using the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\tau $ </tex-math></inline-formula> – <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\omega $ </tex-math></inline-formula> model with reasonable accuracy over the boreal forest provided the vegetation and soil parameters are optimized. The SM retrieval using a dual channel <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\tau $ </tex-math></inline-formula> – <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\omega $ </tex-math></inline-formula> model, which utilize both horizontally and vertically polarized SMAP TB, performs better than that with a single channel algorithm (SCA), using optimized parameters.

2021

DOI bib
L-band vegetation optical depth as an indicator of plant water potential in a temperate deciduous forest stand
Nataniel M. Holtzman, Leander D. L. Anderegg, Simon Kraatz, Alex Mavrovic, Oliver Sonnentag, Christoforos Pappas, Michael H. Cosh, Alexandre Langlois, Tarendra Lakhankar, Derek Tesser, N. Steiner, Andreas Colliander, Alexandre Roy, Alexandra G. Konings
Biogeosciences, Volume 18, Issue 2

Abstract. Vegetation optical depth (VOD) retrieved from microwave radiometry correlates with the total amount of water in vegetation, based on theoretical and empirical evidence. Because the total amount of water in vegetation varies with relative water content (as well as with biomass), this correlation further suggests a possible relationship between VOD and plant water potential, a quantity that drives plant hydraulic behavior. Previous studies have found evidence for that relationship on the scale of satellite pixels tens of kilometers across, but these comparisons suffer from significant scaling error. Here we used small-scale remote sensing to test the link between remotely sensed VOD and plant water potential. We placed an L-band radiometer on a tower above the canopy looking down at red oak forest stand during the 2019 growing season in central Massachusetts, United States. We measured stem xylem and leaf water potentials of trees within the stand and retrieved VOD with a single-channel algorithm based on continuous radiometer measurements and measured soil moisture. VOD exhibited a diurnal cycle similar to that of leaf and stem water potential, with a peak at approximately 05:00 eastern daylight time (UTC−4). VOD was also positively correlated with both the measured dielectric constant and water potentials of stem xylem over the growing season. The presence of moisture on the leaves did not affect the observed relationship between VOD and stem water potential. We used our observed VOD–water-potential relationship to estimate stand-level values for a radiative transfer parameter and a plant hydraulic parameter, which compared well with the published literature. Our findings support the use of VOD for plant hydraulic studies in temperate forests.

2018

DOI bib
SMAP soil moisture improves global evapotranspiration
A. J. Purdy, Joshua B. Fisher, Michael L. Goulden, Andreas Colliander, G. H. Halverson, Kevin Tu, J. S. Famiglietti
Remote Sensing of Environment, Volume 219

Abstract Accurate estimation of global evapotranspiration (ET) is essential to understand water cycle and land-atmosphere feedbacks in the Earth system. Satellite-driven ET models provide global estimates, but many of the ET algorithms have been designed independently of soil moisture observations. As water for ET is sourced from the soil, incorporating soil moisture into global remote sensing algorithms of ET should, in theory, improve performance, especially in water-limited regions. This paper presents an update to the widely-used Priestley Taylor-Jet Propulsion Laboratory (PT-JPL) ET algorithm to incorporate spatially explicit daily surface soil moisture control on soil evaporation and canopy transpiration. The updated algorithm is evaluated using 14 AmeriFlux eddy covariance towers co-located with COsmic-ray Soil Moisture Observing System (COSMOS) soil moisture observations. The new PT-JPLSM model shows reduced errors and increased explanation of variance, with the greatest improvements in water-limited regions. Soil moisture incorporation into soil evaporation improves ET estimates by reducing bias and RMSE by 29.9% and 22.7% respectively, while soil moisture incorporation into transpiration improves ET estimates by reducing bias by 30.2%, RMSE by 16.9%. We apply the algorithm globally using soil moisture observations from the Soil Moisture Active Passive Mission (SMAP). These new global estimates of ET show reduced error at finer spatial resolutions and provide a rich dataset to evaluate land surface and climate models, vegetation response to changes in water availability and environmental conditions, and anthropogenic perturbations to the water cycle.

DOI bib
Capturing agricultural soil freeze/thaw state through remote sensing and ground observations: A soil freeze/thaw validation campaign
Tracy Rowlandson, Aaron Berg, Alex Roy, Edward Kim, Renato Pardo Lara, Jarrett Powers, Kristin Lewis, Paul R. Houser, K. C. McDonald, Peter Toose, An-Ming Wu, Eugenia De Marco, Chris Derksen, Jared Entin, Andreas Colliander, Xiaolan Xu, Alex Mavrovic
Remote Sensing of Environment, Volume 211

Abstract A field campaign was conducted October 30th to November 13th, 2015 with the intention of capturing diurnal soil freeze/thaw state at multiple scales using ground measurements and remote sensing measurements. On four of the five sampling days, we observed a significant difference between morning (frozen scenario) and afternoon (thawed scenario) ground-based measurements of the soil relative permittivity. These results were supported by an in situ soil moisture and temperature network (installed at the scale of a spaceborne passive microwave pixel) which indicated surface soil temperatures fell below 0 °C for the same four sampling dates. Ground-based radiometers appeared to be highly sensitive to F/T conditions of the very surface of the soil and indicated normalized polarization index (NPR) values that were below the defined freezing values during the morning sampling period on all sampling dates. The Scanning L-band Active Passive (SLAP) instrumentation, flown over the study region, showed very good agreement with the ground-based radiometers, with freezing states observed on all four days that the airborne observations covered the fields with ground-based radiometers. The Soil Moisture Active Passive (SMAP) satellite had morning overpasses on three of the sampling days, and indicated frozen conditions on two of those days. It was found that >60% of the in situ network had to indicate surface temperatures below 0 °C before SMAP indicated freezing conditions. This was also true of the SLAP radiometer measurements. The SMAP, SLAP and ground-based radiometer measurements all indicated freezing conditions when soil temperature sensors installed at 5 cm depth were not frozen.