2023
Abstract Depression focused recharge (DFR) may be a hydrologically important process that impacts the vulnerability of public supply wells, specifically related to pathogenic contaminants. The nature of DFR in glacial moraine environments, such as those located in northern latitudes within North America and Europe, is less well established than in other regions such as the Prairie Pothole Region (Northern United States, Western Canada) and the High Plains Aquifer (Central United States). The objectives of this study were to quantify seasonal infiltration flux beneath a topographically‐closed depression within 50 m of a public supply well and to interpret the impact of this DFR process on well vulnerability. Field instruments including groundwater monitoring wells, pressure transducers, soil moisture sensors and temperature sensors were installed in vertical clusters to capture the dynamics of infiltration, drainage and recharge within the depression feature. Continuous weather data were recorded by a meteorological station at the site. Transient infiltration was quantified during two contrasting hydrological events. The first event (~2 days) was an intense rainfall (>50 mm) on a melting snowpack during the fall season when the soils were unfrozen. The second was a longer (35 day) period during the spring freshet when the surficial soils were initially frozen and subject to diurnal freezing and thawing and occasional precipitation events. The water table fluctuation method augmented by Darcy flux contributions, in addition to numerical modelling using the HYDRUS‐1D model, were used to quantify recharge rates beneath the depression. Numerical DFR estimates and analytical results differed by ±8%. Results indicate that recharge rates on the order of the annual regional average can occur beneath localized features in response to extreme events associated with snowmelt and intense rainfall. Such events may represent a microbial threat to groundwater quality if public supply wells are located nearby.
2022
Abstract. Data for small to mid-sized watersheds are seldom publicly available, but may be representative of diverse types of hydrological contexts when assessing patterns. These types of data may also prove valuable for informing numerical experimentation and practical modelling. This paper presents data collected in the Alder Creek watershed, located within the Grand River basin in Ontario, Canada. The Alder Creek watershed provides source water from the aquifers of the Waterloo Moraine for multiple well fields that supply the cities of Kitchener and Waterloo. Recharge rates and human impacts on streamflow are important topics for the watershed, and many numerical models of the area have been constructed. In order to support these types of analyses, field equipment was deployed within the watershed between 2013 and 2018 to monitor groundwater levels, stream stage, soil moisture, soil temperature, rainfall, and other weather parameters. The available data are described, complementary information is presented, and examples of possible analyses are cited and illustrated. The data presented and described in this paper are available at https://doi.org/10.20383/101.0178 (Wiebe et al., 2019).
2021
Dynamic recharge events related to extreme rainfall or snowmelt are becoming more common due to climate change. The vulnerability of public supply wells to water quality degradation may temporarily increase during these types of events. The Walkerton, ON, Canada, tragedy (2000) highlighted the threat to human health associated with the rapid transport of microbial pathogens to public supply wells during dynamic recharge events. Field research at the Thornton (Woodstock, ON, Canada) and Mannheim West (Kitchener, ON, Canada) well fields, situated in glacial overburden aquifers, identified a potential increase in vulnerability due to event-based recharge phenomena. Ephemeral surface water flow and local ponding containing microbial pathogen indicator species were observed and monitored within the capture zones of public supply wells following heavy rain and/or snowmelt. Elevated recharge rates beneath these temporary surface water features were estimated to range between 40 and 710 mm over two-week periods using analytical and numerical modelling based on the water level, soil moisture, and temperature data. Modelling also suggested that such events could reduce contaminant travel times to a supply well, increasing vulnerability to water quality degradation. These studies suggest that event-based recharge processes occurring close to public supply wells may enhance the vulnerability of the wells to surface-sourced contaminants.
2020
Abstract Rainfall is often the largest component of the water budget and even a small uncertainty percentage may lead to challenges for accurately estimating groundwater recharge as a calculated residual within a water budget approach. Watersheds are a common scale for water budget assessment, and rainfall monitoring networks typically have widely spaced gauges that are frequently outside the watershed of interest. The effects of rainfall spatial variability and uncertainty on groundwater recharge estimates have received little attention and may influence water budget-derived recharge estimations. In the present study, the influence of spatial density in rainfall measurement on the numerical estimation of groundwater recharge was investigated through a series of modelling scenarios utilizing field data obtained from progressively denser rain gauge networks associated with a typical watershed in southern Ontario. The uncertainty of the recharge component of the water budget was used as a metric to aid interpretation of results. The scenarios employed networks composed of: 1) one nearby national weather station (within 3 km), 2) a regional network of six stations (within 30 km), and 3) a local network of six stations, five of which were within the selected watershed. A coupled and fully distributed hydrologic model (MIKE SHE) was used in the scenario analysis and applied to the Alder Creek watershed on the Waterloo Moraine near Kitchener-Waterloo, Ontario. Rainfall showed poor spatial correlation, even at the daily time scale. Average annual results over a three-year period showed that recharge rates varied up to 140 mm per year (~40% of previously estimated annual recharge) among scenarios, with differences between scenarios greater than the water budget uncertainty during one of the years. These findings suggest that the availability of local rainfall measurements has the potential to influence the calibration of transient watershed hydrogeological models.