Ankur R. Desai


2023

DOI bib
Modeled production, oxidation, and transport processes of wetland methane emissions in temperate, boreal, and Arctic regions
Masahito Ueyama, Sara Knox, Kyle Delwiche, Sheel Bansal, William J. Riley, Dennis Baldocchi, Takashi Hirano, Gavin McNicol, K. V. Schäfer, Lisamarie Windham‐Myers, Benjamin Poulter, Robert B. Jackson, Kuang‐Yu Chang, Jiquen Chen, Housen Chu, Ankur R. Desai, Sébastien Gogo, Hiroyasu Iwata, Minseok Kang, Ivan Mammarella, Matthias Peichl, Oliver Sonnentag, Eeva‐Stiina Tuittila, Youngryel Ryu, Eugénie Euskirchen, Mathias Göckede, Adrien Jacotot, Mats Nilsson, Torsten Sachs
Global Change Biology, Volume 29, Issue 8

Wetlands are the largest natural source of methane (CH4 ) to the atmosphere. The eddy covariance method provides robust measurements of net ecosystem exchange of CH4 , but interpreting its spatiotemporal variations is challenging due to the co-occurrence of CH4 production, oxidation, and transport dynamics. Here, we estimate these three processes using a data-model fusion approach across 25 wetlands in temperate, boreal, and Arctic regions. Our data-constrained model-iPEACE-reasonably reproduced CH4 emissions at 19 of the 25 sites with normalized root mean square error of 0.59, correlation coefficient of 0.82, and normalized standard deviation of 0.87. Among the three processes, CH4 production appeared to be the most important process, followed by oxidation in explaining inter-site variations in CH4 emissions. Based on a sensitivity analysis, CH4 emissions were generally more sensitive to decreased water table than to increased gross primary productivity or soil temperature. For periods with leaf area index (LAI) of ≥20% of its annual peak, plant-mediated transport appeared to be the major pathway for CH4 transport. Contributions from ebullition and diffusion were relatively high during low LAI (<20%) periods. The lag time between CH4 production and CH4 emissions tended to be short in fen sites (3 ± 2 days) and long in bog sites (13 ± 10 days). Based on a principal component analysis, we found that parameters for CH4 production, plant-mediated transport, and diffusion through water explained 77% of the variance in the parameters across the 19 sites, highlighting the importance of these parameters for predicting wetland CH4 emissions across biomes. These processes and associated parameters for CH4 emissions among and within the wetlands provide useful insights for interpreting observed net CH4 fluxes, estimating sensitivities to biophysical variables, and modeling global CH4 fluxes.

2022

DOI bib
Causality guided machine learning model on wetland CH4 emissions across global wetlands
Kunxiaojia Yuan, Qing Zhu, Fa Li, William J. Riley, M. S. Torn, Housen Chu, Gavin McNicol, Min Chen, Sara Knox, Kyle Delwiche, Huayi Wu, Dennis Baldocchi, Hengbo Ma, Ankur R. Desai, Jiquan Chen, Torsten Sachs, Masahito Ueyama, Oliver Sonnentag, Manuel Helbig, Eeva‐Stiina Tuittila, Gerald Jurasinski, Franziska Koebsch, David I. Campbell, Hans Peter Schmid, Annalea Lohila, Mathias Goeckede, Mats Nilsson, Thomas Friborg, Joachim Jansen, Donatella Zona, Eugénie Euskirchen, Eric J. Ward, Gil Bohrer, Zhenong Jin, Licheng Liu, Hiroyasu Iwata, Jordan P. Goodrich, Robert B. Jackson
Agricultural and Forest Meteorology, Volume 324

Wetland CH4 emissions are among the most uncertain components of the global CH4 budget. The complex nature of wetland CH4 processes makes it challenging to identify causal relationships for improving our understanding and predictability of CH4 emissions. In this study, we used the flux measurements of CH4 from eddy covariance towers (30 sites from 4 wetlands types: bog, fen, marsh, and wet tundra) to construct a causality-constrained machine learning (ML) framework to explain the regulative factors and to capture CH4 emissions at sub-seasonal scale. We found that soil temperature is the dominant factor for CH4 emissions in all studied wetland types. Ecosystem respiration (CO2) and gross primary productivity exert controls at bog, fen, and marsh sites with lagged responses of days to weeks. Integrating these asynchronous environmental and biological causal relationships in predictive models significantly improved model performance. More importantly, modeled CH4 emissions differed by up to a factor of 4 under a +1°C warming scenario when causality constraints were considered. These results highlight the significant role of causality in modeling wetland CH4 emissions especially under future warming conditions, while traditional data-driven ML models may reproduce observations for the wrong reasons. Our proposed causality-guided model could benefit predictive modeling, large-scale upscaling, data gap-filling, and surrogate modeling of wetland CH4 emissions within earth system land models.

2021

DOI bib
FLUXNET-CH<sub>4</sub>: a global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands
Kyle Delwiche, Sara Knox, Avni Malhotra, Etienne Fluet‐Chouinard, Gavin McNicol, Sarah Féron, Zutao Ouyang, Dario Papale, Carlo Trotta, E. Canfora, You Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, A. J. Dolman, Elke Eichelmann, Eugénie Euskirchen, D. Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Y. Hollinger, Lukas Hörtnagl, Hiroyasu Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John S. King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y.F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim C. Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Kaori Ono, Matthias Peichl, Olli Peltola, M. L. Reba, Andrew D. Richardson, William J. Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey‐Sánchez, Edward A. G. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne Szutu, Jonathan E. Thom, M. S. Torn, Eeva‐Stiina Tuittila, J. Turner, Masahito Ueyama, Alex Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vázquez‐Lule, Joseph Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham‐Myers, Benjamin Poulter, Robert B. Jackson
Earth System Science Data, Volume 13, Issue 7

Abstract. Methane (CH4) emissions from natural landscapes constitute roughly half of global CH4 contributions to the atmosphere, yet large uncertainties remain in the absolute magnitude and the seasonality of emission quantities and drivers. Eddy covariance (EC) measurements of CH4 flux are ideal for constraining ecosystem-scale CH4 emissions due to quasi-continuous and high-temporal-resolution CH4 flux measurements, coincident carbon dioxide, water, and energy flux measurements, lack of ecosystem disturbance, and increased availability of datasets over the last decade. Here, we (1) describe the newly published dataset, FLUXNET-CH4 Version 1.0, the first open-source global dataset of CH4 EC measurements (available at https://fluxnet.org/data/fluxnet-ch4-community-product/, last access: 7 April 2021). FLUXNET-CH4 includes half-hourly and daily gap-filled and non-gap-filled aggregated CH4 fluxes and meteorological data from 79 sites globally: 42 freshwater wetlands, 6 brackish and saline wetlands, 7 formerly drained ecosystems, 7 rice paddy sites, 2 lakes, and 15 uplands. Then, we (2) evaluate FLUXNET-CH4 representativeness for freshwater wetland coverage globally because the majority of sites in FLUXNET-CH4 Version 1.0 are freshwater wetlands which are a substantial source of total atmospheric CH4 emissions; and (3) we provide the first global estimates of the seasonal variability and seasonality predictors of freshwater wetland CH4 fluxes. Our representativeness analysis suggests that the freshwater wetland sites in the dataset cover global wetland bioclimatic attributes (encompassing energy, moisture, and vegetation-related parameters) in arctic, boreal, and temperate regions but only sparsely cover humid tropical regions. Seasonality metrics of wetland CH4 emissions vary considerably across latitudinal bands. In freshwater wetlands (except those between 20∘ S to 20∘ N) the spring onset of elevated CH4 emissions starts 3 d earlier, and the CH4 emission season lasts 4 d longer, for each degree Celsius increase in mean annual air temperature. On average, the spring onset of increasing CH4 emissions lags behind soil warming by 1 month, with very few sites experiencing increased CH4 emissions prior to the onset of soil warming. In contrast, roughly half of these sites experience the spring onset of rising CH4 emissions prior to the spring increase in gross primary productivity (GPP). The timing of peak summer CH4 emissions does not correlate with the timing for either peak summer temperature or peak GPP. Our results provide seasonality parameters for CH4 modeling and highlight seasonality metrics that cannot be predicted by temperature or GPP (i.e., seasonality of CH4 peak). FLUXNET-CH4 is a powerful new resource for diagnosing and understanding the role of terrestrial ecosystems and climate drivers in the global CH4 cycle, and future additions of sites in tropical ecosystems and site years of data collection will provide added value to this database. All seasonality parameters are available at https://doi.org/10.5281/zenodo.4672601 (Delwiche et al., 2021). Additionally, raw FLUXNET-CH4 data used to extract seasonality parameters can be downloaded from https://fluxnet.org/data/fluxnet-ch4-community-product/ (last access: 7 April 2021), and a complete list of the 79 individual site data DOIs is provided in Table 2 of this paper.

DOI bib
Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions
Kuang‐Yu Chang, William J. Riley, Sara Knox, Robert B. Jackson, Gavin McNicol, Benjamin Poulter, Mika Aurela, Dennis Baldocchi, Sheel Bansal, Gil Bohrer, David I. Campbell, Alessandro Cescatti, Housen Chu, Kyle Delwiche, Ankur R. Desai, Eugénie Euskirchen, Thomas Friborg, Mathias Goeckede, Manuel Helbig, Kyle S. Hemes, Takashi Hirano, Hiroyasu Iwata, Minseok Kang, Trevor F. Keenan, Ken W. Krauss, Annalea Lohila, Ivan Mammarella, Bhaskar Mitra, Akira Miyata, Mats Nilsson, Asko Noormets, Walter C. Oechel, Dario Papale, Matthias Peichl, M. L. Reba, Janne Rinne, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Karina V. R. Schäfer, Hans Peter Schmid, Narasinha Shurpali, Oliver Sonnentag, Angela C. I. Tang, M. S. Torn, Carlo Trotta, Eeva‐Stiina Tuittila, Masahito Ueyama, Rodrigo Vargas, Timo Vesala, Lisamarie Windham‐Myers, Zhen Zhang, Donatella Zona
Nature Communications, Volume 12, Issue 1

Abstract Wetland methane (CH 4 ) emissions ( $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> ) are important in global carbon budgets and climate change assessments. Currently, $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> are often controlled by factors beyond temperature. Here, we evaluate the relationship between $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> and temperature using observations from the FLUXNET-CH 4 database. Measurements collected across the globe show substantial seasonal hysteresis between $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> and temperature, suggesting larger $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH 4 production are thus needed to improve global CH 4 budget assessments.

DOI bib
Gap-filling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands
Jeremy Irvin, Sharon Zhou, Gavin McNicol, Fred Lu, Vincent Liu, Etienne Fluet‐Chouinard, Zutao Ouyang, Sara Knox, Antje Lucas-Moffat, Carlo Trotta, Dario Papale, Domenico Vitale, Ivan Mammarella, Pavel Alekseychik, Mika Aurela, Anand Avati, Dennis Baldocchi, Sheel Bansal, Gil Bohrer, David I. Campbell, Jiquan Chen, Housen Chu, Higo J. Dalmagro, Kyle Delwiche, Ankur R. Desai, Eugénie Euskirchen, Sarah Féron, Mathias Goeckede, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, Hiroyasu Iwata, Gerald Jurasinski, Aram Kalhori, Andrew Kondrich, Derrick Y.F. Lai, Annalea Lohila, Avni Malhotra, Lutz Merbold, Bhaskar Mitra, Andrew Y. Ng, Mats Nilsson, Asko Noormets, Matthias Peichl, Camilo Rey‐Sánchez, Andrew D. Richardson, Benjamin R. K. Runkle, Karina V. R. Schäfer, Oliver Sonnentag, Ellen Stuart-Haëntjens, Cove Sturtevant, Masahito Ueyama, Alex Valach, Rodrigo Vargas, George L. Vourlitis, Eric J. Ward, Guan Xhuan Wong, Donatella Zona, Ma. Carmelita R. Alberto, David P. Billesbach, Gerardo Celis, A. J. Dolman, Thomas Friborg, Kathrin Fuchs, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Lukas Hörtnagl, Adrien Jacotot, Franziska Koebsch, Kuno Kasak, Regine Maier, Timothy H. Morin, Eiko Nemitz, Walter C. Oechel, Patricia Y. Oikawa, Kaori Ono, Torsten Sachs, Ayaka Sakabe, Edward A. G. Schuur, Robert Shortt, Ryan C. Sullivan, Daphne Szutu, Eeva‐Stiina Tuittila, Andrej Varlagin, Joeseph G. Verfaillie, Christian Wille, Lisamarie Windham‐Myers, Benjamin Poulter, Robert B. Jackson
Agricultural and Forest Meteorology, Volume 308-309

• We evaluate methane flux gap-filling methods across 17 boreal-to-tropical wetlands • New methods for generating realistic artificial gaps and uncertainties are proposed • Decision tree algorithms perform slightly better than neural networks on average • Soil temperature and generic seasonality are the most important predictors • Open-source code is released for gap-filling steps and uncertainty evaluation Time series of wetland methane fluxes measured by eddy covariance require gap-filling to estimate daily, seasonal, and annual emissions. Gap-filling methane fluxes is challenging because of high variability and complex responses to multiple drivers. To date, there is no widely established gap-filling standard for wetland methane fluxes, with regards both to the best model algorithms and predictors. This study synthesizes results of different gap-filling methods systematically applied at 17 wetland sites spanning boreal to tropical regions and including all major wetland classes and two rice paddies. Procedures are proposed for: 1) creating realistic artificial gap scenarios, 2) training and evaluating gap-filling models without overstating performance, and 3) predicting half-hourly methane fluxes and annual emissions with realistic uncertainty estimates. Performance is compared between a conventional method (marginal distribution sampling) and four machine learning algorithms. The conventional method achieved similar median performance as the machine learning models but was worse than the best machine learning models and relatively insensitive to predictor choices. Of the machine learning models, decision tree algorithms performed the best in cross-validation experiments, even with a baseline predictor set, and artificial neural networks showed comparable performance when using all predictors. Soil temperature was frequently the most important predictor whilst water table depth was important at sites with substantial water table fluctuations, highlighting the value of data on wetland soil conditions. Raw gap-filling uncertainties from the machine learning models were underestimated and we propose a method to calibrate uncertainties to observations. The python code for model development, evaluation, and uncertainty estimation is publicly available. This study outlines a modular and robust machine learning workflow and makes recommendations for, and evaluates an improved baseline of, methane gap-filling models that can be implemented in multi-site syntheses or standardized products from regional and global flux networks (e.g., FLUXNET).

DOI bib
Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales
Sara Knox, Sheel Bansal, Gavin McNicol, Karina V. R. Schäfer, Cove Sturtevant, Masahito Ueyama, Alex Valach, Dennis Baldocchi, Kyle Delwiche, Ankur R. Desai, Eugénie Euskirchen, Jinxun Liu, Annalea Lohila, Avni Malhotra, Lulie Melling, William J. Riley, Benjamin R. K. Runkle, J. Turner, Rodrigo Vargas, Qing Zhu, Tuula Alto, Etienne Fluet‐Chouinard, Mathias Goeckede, Joe R. Melton, Oliver Sonnentag, Timo Vesala, Eric J. Ward, Zhen Zhang, Sarah Féron, Zutao Ouyang, Pavel Alekseychik, Mika Aurela, Gil Bohrer, David I. Campbell, Jiquan Chen, Housen Chu, Higo J. Dalmagro, Jordan P. Goodrich, Pia Gottschalk, Takashi Hirano, Hiroyasu Iwata, Gerald Jurasinski, Minseok Kang, Franziska Koebsch, Ivan Mammarella, Mats Nilsson, Kaori Ono, Matthias Peichl, Olli Peltola, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Jed P. Sparks, Eeva‐Stiina Tuittila, George L. Vourlitis, Guan Xhuan Wong, Lisamarie Windham‐Myers, B. Poulter, Robert B. Jackson
Global Change Biology, Volume 27, Issue 15

While wetlands are the largest natural source of methane (CH4) to the atmosphere, they represent a large source of uncertainty in the global CH4 budget due to the complex biogeochemical controls on CH4 dynamics. Here we present, to our knowledge, the first multi-site synthesis of how predictors of CH4 fluxes (FCH4) in freshwater wetlands vary across wetland types at diel, multiday (synoptic), and seasonal time scales. We used several statistical approaches (correlation analysis, generalized additive modeling, mutual information, and random forests) in a wavelet-based multi-resolution framework to assess the importance of environmental predictors, nonlinearities and lags on FCH4 across 23 eddy covariance sites. Seasonally, soil and air temperature were dominant predictors of FCH4 at sites with smaller seasonal variation in water table depth (WTD). In contrast, WTD was the dominant predictor for wetlands with smaller variations in temperature (e.g., seasonal tropical/subtropical wetlands). Changes in seasonal FCH4 lagged fluctuations in WTD by ~17 ± 11 days, and lagged air and soil temperature by median values of 8 ± 16 and 5 ± 15 days, respectively. Temperature and WTD were also dominant predictors at the multiday scale. Atmospheric pressure (PA) was another important multiday scale predictor for peat-dominated sites, with drops in PA coinciding with synchronous releases of CH4. At the diel scale, synchronous relationships with latent heat flux and vapor pressure deficit suggest that physical processes controlling evaporation and boundary layer mixing exert similar controls on CH4 volatilization, and suggest the influence of pressurized ventilation in aerenchymatous vegetation. In addition, 1- to 4-h lagged relationships with ecosystem photosynthesis indicate recent carbon substrates, such as root exudates, may also control FCH4. By addressing issues of scale, asynchrony, and nonlinearity, this work improves understanding of the predictors and timing of wetland FCH4 that can inform future studies and models, and help constrain wetland CH4 emissions.

DOI bib
Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data
Gilberto Pastorello, Carlo Trotta, E. Canfora, Housen Chu, Danielle Christianson, You-Wei Cheah, C. Poindexter, Jiquan Chen, Abdelrahman Elbashandy, Marty Humphrey, Peter Isaac, Diego Polidori, Markus Reichstein, Alessio Ribeca, Catharine van Ingen, Nicolas Vuichard, Leiming Zhang, B.D. Amiro, Christof Ammann, M. Altaf Arain, Jonas Ardö, Timothy J. Arkebauer, Stefan K. Arndt, Nicola Arriga, Marc Aubinet, Mika Aurela, Dennis Baldocchi, Alan Barr, Eric Beamesderfer, Luca Belelli Marchesini, Onil Bergeron, Jason Beringer, Christian Bernhofer, Daniel Berveiller, D. P. Billesbach, T. Andrew Black, Peter D. Blanken, Gil Bohrer, Julia Boike, Paul V. Bolstad, Damien Bonal, Jean-Marc Bonnefond, David R. Bowling, Rosvel Bracho, Jason Brodeur, Christian Brümmer, Nina Buchmann, Benoît Burban, Sean P. Burns, Pauline Buysse, Peter Cale, M. Cavagna, Pierre Cellier, Shiping Chen, Isaac Chini, Torben R. Christensen, James Cleverly, Alessio Collalti, Claudia Consalvo, Bruce D. Cook, David Cook, Carole Coursolle, Edoardo Cremonese, Peter S. Curtis, Ettore D’Andrea, Humberto da Rocha, Xiaoqin Dai, Kenneth J. Davis, Bruno De Cinti, A. de Grandcourt, Anne De Ligne, Raimundo Cosme de Oliveira, Nicolas Delpierre, Ankur R. Desai, Carlos Marcelo Di Bella, Paul Di Tommasi, A. J. Dolman, Francisco Domingo, Gang Dong, Sabina Dore, Pierpaolo Duce, Éric Dufrêne, Allison L. Dunn, J.T. Dusek, Derek Eamus, Uwe Eichelmann, Hatim Abdalla M. ElKhidir, Werner Eugster, Cäcilia Ewenz, B. E. Ewers, D. Famulari, Silvano Fares, Iris Feigenwinter, Andrew Feitz, Rasmus Fensholt, Gianluca Filippa, M. L. Fischer, J. M. Frank, Marta Galvagno, Mana Gharun, Damiano Gianelle, Bert Gielen, Beniamino Gioli, Anatoly A. Gitelson, Ignacio Goded, Mathias Goeckede, Allen H. Goldstein, Christopher M. Gough, Michael L. Goulden, Alexander Graf, Anne Griebel, Carsten Gruening, Thomas Grünwald, Albin Hammerle, Shijie Han, Xingguo Han, Birger Ulf Hansen, Chad Hanson, Juha Hatakka, Yongtao He, Markus Hehn, Bernard Heinesch, Nina Hinko‐Najera, Lukas Hörtnagl, Lindsay B. Hutley, Andreas Ibrom, Hiroki Ikawa, Marcin Jackowicz-Korczyński, Dalibor Janouš, W.W.P. Jans, Rachhpal S. Jassal, Shicheng Jiang, Tomomichi Kato, Myroslava Khomik, Janina Klatt, Alexander Knohl, Sara Knox, Hideki Kobayashi, Georgia R. Koerber, Olaf Kolle, Yukio Kosugi, Ayumi Kotani, Andrew S. Kowalski, B. Kruijt, Juliya Kurbatova, Werner L. Kutsch, Hyojung Kwon, Samuli Launiainen, Tuomas Laurila, B. E. Law, R. Leuning, Yingnian Li, Michael J. Liddell, Jean‐Marc Limousin, Marryanna Lion, Adam Liska, Annalea Lohila, Ana López‐Ballesteros, Efrén López‐Blanco, Benjamin Loubet, Denis Loustau, Antje Lucas-Moffat, Johannes Lüers, Siyan Ma, Craig Macfarlane, Vincenzo Magliulo, Regine Maier, Ivan Mammarella, Giovanni Manca, Barbara Marcolla, Hank A. Margolis, Serena Marras, W. J. Massman, Mikhail Mastepanov, Roser Matamala, Jaclyn Hatala Matthes, Francesco Mazzenga, Harry McCaughey, Ian McHugh, Andrew M. S. McMillan, Lutz Merbold, Wayne S. Meyer, Tilden P. Meyers, S. D. Miller, Stefano Minerbi, Uta Moderow, Russell K. Monson, Leonardo Montagnani, Caitlin E. Moore, E.J. Moors, Virginie Moreaux, Christine Moureaux, J. William Munger, T. Nakai, Johan Neirynck, Zoran Nesic, Giacomo Nicolini, Asko Noormets, Matthew Northwood, Marcelo D. Nosetto, Yann Nouvellon, Kimberly A. Novick, W. C. Oechel, Jørgen E. Olesen, Jean‐Marc Ourcival, S. A. Papuga, Frans‐Jan W. Parmentier, Eugénie Paul‐Limoges, Marián Pavelka, Matthias Peichl, Elise Pendall, Richard P. Phillips, Kim Pilegaard, Norbert Pirk, Gabriela Posse, Thomas L. Powell, Heiko Prasse, Suzanne M. Prober, Serge Rambal, Üllar Rannik, Naama Raz‐Yaseef, Corinna Rebmann, David E. Reed, Víctor Resco de Dios, Natalia Restrepo‐Coupe, Borja R. Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, S. R. Saleska, Enrique P. Sánchez-Cañete, Z. M. Sánchez-Mejía, Hans Peter Schmid, Marius Schmidt, Karl Schneider, Frederik Schrader, Ivan Schroder, Russell L. Scott, Pavel Sedlák, Penélope Serrano-Ortíz, Changliang Shao, Peili Shi, Ivan Shironya, Lukas Siebicke, Ladislav Šigut, Richard Silberstein, Costantino Sirca, Donatella Spano, R. Steinbrecher, Robert M. Stevens, Cove Sturtevant, Andy Suyker, Torbern Tagesson, Satoru Takanashi, Yanhong Tang, Nigel Tapper, Jonathan E. Thom, Michele Tomassucci, Juha‐Pekka Tuovinen, S. P. Urbanski, Р. Валентини, M. K. van der Molen, Eva van Gorsel, J. van Huissteden, Andrej Varlagin, Joe Verfaillie, Timo Vesala, Caroline Vincke, Domenico Vitale, N. N. Vygodskaya, Jeffrey P. Walker, Elizabeth A. Walter‐Shea, Huimin Wang, R. J. Weber, Sebastian Westermann, Christian Wille, Steven C. Wofsy, Georg Wohlfahrt, Sebastian Wolf, William Woodgate, Yuelin Li, Roberto Zampedri, Junhui Zhang, Guoyi Zhou, Donatella Zona, D. Agarwal, S. Biraud, M. S. Torn, Dario Papale
Scientific Data, Volume 8, Issue 1

A Correction to this paper has been published: https://doi.org/10.1038/s41597-021-00851-9.

DOI bib
Global transpiration data from sap flow measurements: the SAPFLUXNET database
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos Pereira Marinho Aidar, Scott T. Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson‐Teixeira, L. M. T. Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert C. Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, B. Blakely, Johnny L. Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, César Cisneros Vaca, Kenneth L. Clark, Edoardo Cremonese, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frédéric Chauvaud, Michal Dohnal, Jean‐Christophe Domec, Sebinasi Dzikiti, C. Edgar, Rebekka Eichstaedt, Tarek S. El‐Madany, J.A. Elbers, Cleiton B. Eller, Eugénie Euskirchen, B. E. Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar García-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, J. P. Grace, André Granier, Anne Griebel, Guangyu Yang, Mark B Gush, P. J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernández‐Santana, Valentine Herrmann, Teemu Hölttä, F. Holwerda, Hongzhong Dang, J. E. Irvine, Supat Isarangkool Na Ayutthaya, P. G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun‐Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean‐Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, A. Lindroth, Pilar Llorens, Álvaro López-Bernal, M. M. Loranty, Dietmar Lüttschwager, Cate Macinnis‐Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley M. Matheny, Nate G. McDowell, Sean M. McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick J. Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, R. J. Norby, Kimberly A. Novick, Walter Oberhuber, Nikolaus Obojes, Christopher A. Oishi, Rafael S. Oliveira, Ram Oren, Jean‐Marc Ourcival, Teemu Paljakka, Óscar Pérez-Priego, Pablo Luís Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine G. Rascher, George R. Robinson, Humberto Ribeiro da Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, A. V. Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor‐ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey M. Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan D. Wullschleger, K. Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, Jordi Martínez‐Vilalta
Earth System Science Data, Volume 13, Issue 6

Abstract. Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land–atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The “sapfluxnetr” R package – designed to access, visualize, and process SAPFLUXNET data – is available from CRAN.

DOI bib
Seasonality in aerodynamic resistance across a range of North American ecosystems
Adam M. Young, M. A. Friedl, Bijan Seyednasrollah, Eric Beamesderfer, Carlos M. Carrillo, Xiaolu Li, Minkyu Moon, M. Altaf Arain, Dennis Baldocchi, Peter D. Blanken, Gil Bohrer, Sean P. Burns, Housen Chu, Ankur R. Desai, Timothy J. Griffis, David Y. Hollinger, M. E. Litvak, Kim Novick, Russell L. Scott, Andrew E. Suyker, Joseph Verfaillie, J. D. Wood, Andrew D. Richardson
Agricultural and Forest Meteorology, Volume 310

• Phenological controls over aerodynamic resistance ( R ah ) were investigated. • R ah exhibits significant seasonal variability across a wide range of sites. • These shifts in R ah were caused by phenology in some ecosystems. • Accounting for variation in kB −1 is important for improving predictions of H . Surface roughness – a key control on land-atmosphere exchanges of heat and momentum – differs between dormant and growing seasons. However, how surface roughness shifts seasonally at fine time scales (e.g., days) in response to changing canopy conditions is not well understood. This study: (1) explores how aerodynamic resistance changes seasonally; (2) investigates what drives these seasonal shifts, including the role of vegetation phenology; and (3) quantifies the importance of including seasonal changes of aerodynamic resistance in “big leaf” models of sensible heat flux ( H ). We evaluated aerodynamic resistance and surface roughness lengths for momentum ( z 0m ) and heat ( z 0h ) using the kB −1 parameter (ln( z 0m / z 0h )). We used AmeriFlux data to obtain surface-roughness estimates, and PhenoCam greenness data for phenology. This analysis included 23 sites and ∼190 site years from deciduous broadleaf, evergreen needleleaf, woody savanna, cropland, grassland, and shrubland plant-functional types (PFTs). Results indicated clear seasonal patterns in aerodynamic resistance to sensible heat transfer ( R ah ). This seasonality tracked PhenoCam-derived start-of-season green-up transitions in PFTs displaying the most significant seasonal changes in canopy structure, with R ah decreasing near green-up transitions. Conversely, in woody savanna sites and evergreen needleleaf forests, patterns in R ah were not linked to green-up. Our findings highlight that decreases in kB −1 are an important control over R ah , explaining > 50% of seasonal variation in R ah across most sites. Decreases in kB −1 during green-up are likely caused by increasing z 0h in response to higher leaf area index. Accounting for seasonal variation in kB −1 is key for predicting H as well; assuming kB −1 to be constant resulted in significant biases that also exhibited strong seasonal patterns. Overall, we found that aerodynamic resistance can be sensitive to phenology in ecosystems having strong seasonality in leaf area, and this linkage is critical for understanding land-atmosphere interactions at seasonal time scales.

DOI bib
Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites
Housen Chu, Xiangzhong Luo, Zutao Ouyang, Chan Sc, Sigrid Dengel, S. Biraud, M. S. Torn, Stefan Metzger, Jitendra Kumar, M. Altaf Arain, T. J. Arkebauer, Dennis Baldocchi, Carl J. Bernacchi, D. P. Billesbach, T. Andrew Black, Peter D. Blanken, Gil Bohrer, Rosvel Bracho, Scott Brown, Nathaniel A. Brunsell, Jiquan Chen, Xingyuan Chen, Kenneth L. Clark, Ankur R. Desai, Tomer Duman, David Durden, Silvano Fares, Inke Forbrich, John A. Gamon, Christopher M. Gough, Timothy J. Griffis, Manuel Helbig, David Y. Hollinger, Elyn Humphreys, Hiroki Ikawa, Hiroyasu Iwata, Yang Ju, John F. Knowles, Sara Knox, Hideki Kobayashi, Thomas E. Kolb, Beverly E. Law, Xuhui Lee, M. E. Litvak, Heping Li, J. William Munger, Asko Noormets, Kim Novick, Steven F. Oberbauer, Walter C. Oechel, Patricia Y. Oikawa, S. A. Papuga, Elise Pendall, Prajaya Prajapati, John H. Prueger, William L. Quinton, Andrew D. Richardson, Eric S. Russell, Russell L. Scott, Gregory Starr, R. M. Staebler, Paul C. Stoy, Ellen Stuart-Haëntjens, Oliver Sonnentag, Ryan C. Sullivan, Andy Suyker, Masahito Ueyama, Rodrigo Vargas, J. D. Wood, Donatella Zona
Agricultural and Forest Meteorology, Volume 301-302

• Large-scale eddy-covariance flux datasets need to be used with footprint-awareness • Using a fixed-extent target area across sites can bias model-data integration • Most sites do not represent the dominant land-cover type at a larger spatial extent • A representativeness index provides general guidance for site selection and data use Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements taken at individual eddy-covariance sites reflect model- or satellite-based grid cells? We evaluate flux footprints—the temporally dynamic source areas that contribute to measured fluxes—and the representativeness of these footprints for target areas (e.g., within 250–3000 m radii around flux towers) that are often used in flux-data synthesis and modeling studies. We examine the land-cover composition and vegetation characteristics, represented here by the Enhanced Vegetation Index (EVI), in the flux footprints and target areas across 214 AmeriFlux sites, and evaluate potential biases as a consequence of the footprint-to-target-area mismatch. Monthly 80% footprint climatologies vary across sites and through time ranging four orders of magnitude from 10 3 to 10 7 m 2 due to the measurement heights, underlying vegetation- and ground-surface characteristics, wind directions, and turbulent state of the atmosphere. Few eddy-covariance sites are located in a truly homogeneous landscape. Thus, the common model-data integration approaches that use a fixed-extent target area across sites introduce biases on the order of 4%–20% for EVI and 6%–20% for the dominant land cover percentage. These biases are site-specific functions of measurement heights, target area extents, and land-surface characteristics. We advocate that flux datasets need to be used with footprint awareness, especially in research and applications that benchmark against models and data products with explicit spatial information. We propose a simple representativeness index based on our evaluations that can be used as a guide to identify site-periods suitable for specific applications and to provide general guidance for data use.

2020

DOI bib
Increasing contribution of peatlands to boreal evapotranspiration in a warming climate
Manuel Helbig, J. M. Waddington, Pavel Alekseychik, B.D. Amiro, Mika Aurela, Alan G. Barr, T. Andrew Black, Peter D. Blanken, Sean K. Carey, Jiquan Chen, Jinshu Chi, Ankur R. Desai, Allison L. Dunn, Eugénie Euskirchen, Lawrence B. Flanagan, Inke Forbrich, Thomas Friborg, Achim Grelle, Silvie Harder, Michal Heliasz, Elyn Humphreys, Hiroki Ikawa, Pierre‐Érik Isabelle, Hiroyasu Iwata, Rachhpal S. Jassal, Mika Korkiakoski, Juliya Kurbatova, Lars Kutzbach, Anders Lindroth, Mikaell Ottosson Löfvenius, Annalea Lohila, Ivan Mammarella, Philip Marsh, Trofim C. Maximov, Joe R. Melton, Paul A. Moore, Daniel F. Nadeau, Erin M. Nicholls, Mats Nilsson, Takeshi Ohta, Matthias Peichl, Richard M. Petrone, Roman E. Petrov, Anatoly Prokushkin, William L. Quinton, David E. Reed, Nigel T. Roulet, Benjamin R. K. Runkle, Oliver Sonnentag, I. B. Strachan, Pierre Taillardat, Eeva‐Stiina Tuittila, Juha‐Pekka Tuovinen, J. Turner, Masahito Ueyama, Andrej Varlagin, Martin Wilmking, Steven C. Wofsy, Vyacheslav Zyrianov
Nature Climate Change, Volume 10, Issue 6

The response of evapotranspiration (ET) to warming is of critical importance to the water and carbon cycle of the boreal biome, a mosaic of land cover types dominated by forests and peatlands. The effect of warming-induced vapour pressure deficit (VPD) increases on boreal ET remains poorly understood because peatlands are not specifically represented as plant functional types in Earth system models. Here we show that peatland ET increases more than forest ET with increasing VPD using observations from 95 eddy covariance tower sites. At high VPD of more than 2 kPa, peatland ET exceeds forest ET by up to 30%. Future (2091–2100) mid-growing season peatland ET is estimated to exceed forest ET by over 20% in about one-third of the boreal biome for RCP4.5 and about two-thirds for RCP8.5. Peatland-specific ET responses to VPD should therefore be included in Earth system models to avoid biases in water and carbon cycle projections.

DOI bib
The biophysical climate mitigation potential of boreal peatlands during the growing season
Manuel Helbig, J. M. Waddington, Pavel Alekseychik, B.D. Amiro, Mika Aurela, Alan G. Barr, T. Andrew Black, Sean K. Carey, Jiquan Chen, Jinshu Chi, Ankur R. Desai, Allison L. Dunn, Eugénie Euskirchen, Lawrence B. Flanagan, Thomas Friborg, Michelle Garneau, Achim Grelle, Silvie Harder, Michal Heliasz, Elyn Humphreys, Hiroki Ikawa, Pierre‐Érik Isabelle, Hiroyasu Iwata, Rachhpal S. Jassal, Mika Korkiakoski, Juliya Kurbatova, Lars Kutzbach, Е. Д. Лапшина, Anders Lindroth, Mikaell Ottosson Löfvenius, Annalea Lohila, Ivan Mammarella, Philip Marsh, Paul A. Moore, Trofim C. Maximov, Daniel F. Nadeau, Erin M. Nicholls, Mats Nilsson, Takeshi Ohta, Matthias Peichl, Richard M. Petrone, Anatoly Prokushkin, William L. Quinton, Nigel T. Roulet, Benjamin R. K. Runkle, Oliver Sonnentag, I. B. Strachan, Pierre Taillardat, Eeva‐Stiina Tuittila, Juha‐Pekka Tuovinen, J. Turner, Masahito Ueyama, Andrej Varlagin, Timo Vesala, Martin Wilmking, Vyacheslav Zyrianov, Christopher Schulze
Environmental Research Letters, Volume 15, Issue 10

Peatlands and forests cover large areas of the boreal biome and are critical for global climate regulation. They also regulate regional climate through heat and water vapour exchange with the atmosphere. Understanding how land-atmosphere interactions in peatlands differ from forests may therefore be crucial for modelling boreal climate system dynamics and for assessing climate benefits of peatland conservation and restoration. To assess the biophysical impacts of peatlands and forests on peak growing season air temperature and humidity, we analysed surface energy fluxes and albedo from 35 peatlands and 37 evergreen needleleaf forests - the dominant boreal forest type - and simulated air temperature and vapour pressure deficit (VPD) over hypothetical homogeneous peatland and forest landscapes. We ran an evapotranspiration model using land surface parameters derived from energy flux observations and coupled an analytical solution for the surface energy balance to an atmospheric boundary layer (ABL) model. We found that peatlands, compared to forests, are characterized by higher growing season albedo, lower aerodynamic conductance, and higher surface conductance for an equivalent VPD. This combination of peatland surface properties results in a ∼20% decrease in afternoon ABL height, a cooling (from 1.7 to 2.5 °C) in afternoon air temperatures, and a decrease in afternoon VPD (from 0.4 to 0.7 kPa) for peatland landscapes compared to forest landscapes. These biophysical climate impacts of peatlands are most pronounced at lower latitudes (∼45°N) and decrease toward the northern limit of the boreal biome (∼70°N). Thus, boreal peatlands have the potential to mitigate the effect of regional climate warming during the growing season. The biophysical climate mitigation potential of peatlands needs to be accounted for when projecting the future climate of the boreal biome, when assessing the climate benefits of conserving pristine boreal peatlands, and when restoring peatlands that have experienced peatland drainage and mining. © 2020 The Author(s). Published by IOP Publishing Ltd. (Less)

DOI bib
Using the red chromatic coordinate to characterize the phenology of forest canopy photosynthesis
Ying Liu, Chaoyang Wu, Oliver Sonnentag, Ankur R. Desai, Jian Wang
Agricultural and Forest Meteorology, Volume 285-286

• PhenoCam data at 13 sites were used to analyze its potential of phenology modeling. • GCC and RCC performed well in capturing GPP-based SOS and EOS at DBF sites. • RCC showed unrecognized importance than GCC for phenology modeling at ENF sites. Vegetation phenology has received increasing attention in climate change research. Near-surface sensing using digital repeat photography has proven to be useful for ecosystem-scale monitoring of vegetation phenology. However, our understanding of the link between phenological metrics derived from digital repeat photography and the phenology of forest canopy photosynthesis is still incomplete, especially for evergreen plant species. Using 49 site-years of digital images from the PhenoCam Network from eight evergreen needleleaf forest (ENF) and six deciduous broadleaf forest (DBF) sites in North America, we explored the potential of the green chromatic (GCC) and red chromatic coordinates (RCC) in tracking forest canopy photosynthesis by comparing camera-derived start- and end-of-growing season (SOS and EOS, respectively) with corresponding estimates derived from eddy covariance-derived daily gross primary productivity (GPP). We found that for DBF sites, both GCC and RCC performed comparable in capturing SOS and EOS. However, similar to earlier studies, GCC had limited potential in capturing GPP-based SOS or EOS for ENF sites. In contrast, we found RCC was a better predictor of both GPP-based SOS and EOS for ENF sites. Environmental and ecological explanations were both provided that phenological transitions derived from RCC were highly correlated with spring and autumn meteorological conditions, as well as having overall higher correlations with phenology based on LAI, a critical variable for describing canopy development. Our results demonstrate that RCC is an underappreciated metric for tracking vegetation phenology, especially for ENF sites where GCC failed to provide reliable estimates for GPP-based SOS or EOS. Our results improve confidence in using digital repeat photography to characterize the phenology of canopy photosynthesis across forest types.

DOI bib
The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data
Gilberto Pastorello, Carlo Trotta, E. Canfora, Housen Chu, Danielle Christianson, You-Wei Cheah, C. Poindexter, Jiquan Chen, Abdelrahman Elbashandy, Marty Humphrey, Peter Isaac, Diego Polidori, Markus Reichstein, Alessio Ribeca, Catharine van Ingen, Nicolas Vuichard, Leiming Zhang, B.D. Amiro, Christof Ammann, M. Altaf Arain, Jonas Ardö, Timothy J. Arkebauer, Stefan K. Arndt, Nicola Arriga, Marc Aubinet, Mika Aurela, Dennis Baldocchi, Alan Barr, Eric Beamesderfer, Luca Belelli Marchesini, Onil Bergeron, Jason Beringer, Christian Bernhofer, Daniel Berveiller, D. P. Billesbach, T. Andrew Black, Peter D. Blanken, Gil Bohrer, Julia Boike, Paul V. Bolstad, Damien Bonal, Jean-Marc Bonnefond, David R. Bowling, Rosvel Bracho, Jason Brodeur, Christian Brümmer, Nina Buchmann, Benoît Burban, Sean P. Burns, Pauline Buysse, Peter Cale, M. Cavagna, Pierre Cellier, Shiping Chen, Isaac Chini, Torben R. Christensen, James Cleverly, Alessio Collalti, Claudia Consalvo, Bruce D. Cook, David Cook, Carole Coursolle, Edoardo Cremonese, Peter S. Curtis, Ettore D’Andrea, Humberto da Rocha, Xiaoqin Dai, Kenneth J. Davis, Bruno De Cinti, A. de Grandcourt, Anne De Ligne, Raimundo Cosme de Oliveira, Nicolas Delpierre, Ankur R. Desai, Carlos Marcelo Di Bella, Paul Di Tommasi, A. J. Dolman, Francisco Domingo, Gang Dong, Sabina Dore, Pierpaolo Duce, Éric Dufrêne, Allison L. Dunn, J.T. Dusek, Derek Eamus, Uwe Eichelmann, Hatim Abdalla M. ElKhidir, Werner Eugster, Cäcilia Ewenz, B. E. Ewers, D. Famulari, Silvano Fares, Iris Feigenwinter, Andrew Feitz, Rasmus Fensholt, Gianluca Filippa, M. L. Fischer, J. M. Frank, Marta Galvagno, Mana Gharun, Damiano Gianelle, Bert Gielen, Beniamino Gioli, Anatoly A. Gitelson, Ignacio Goded, Mathias Goeckede, Allen H. Goldstein, Christopher M. Gough, Michael L. Goulden, Alexander Graf, Anne Griebel, Carsten Gruening, Thomas Grünwald, Albin Hammerle, Shijie Han, Xingguo Han, Birger Ulf Hansen, Chad Hanson, Juha Hatakka, Yongtao He, Markus Hehn, Bernard Heinesch, Nina Hinko‐Najera, Lukas Hörtnagl, Lindsay B. Hutley, Andreas Ibrom, Hiroki Ikawa, Marcin Jackowicz-Korczyński, Dalibor Janouš, W.W.P. Jans, Rachhpal S. Jassal, Shicheng Jiang, Tomomichi Kato, Myroslava Khomik, Janina Klatt, Alexander Knohl, Sara Knox, Hideki Kobayashi, Georgia R. Koerber, Olaf Kolle, Yukio Kosugi, Ayumi Kotani, Andrew S. Kowalski, B. Kruijt, Juliya Kurbatova, Werner L. Kutsch, Hyojung Kwon, Samuli Launiainen, Tuomas Laurila, B. E. Law, R. Leuning, Yingnian Li, Michael J. Liddell, Jean‐Marc Limousin, Marryanna Lion, Adam Liska, Annalea Lohila, Ana López‐Ballesteros, Efrén López‐Blanco, Benjamin Loubet, Denis Loustau, Antje Maria Moffat, Johannes Lüers, Siyan Ma, Craig Macfarlane, Vincenzo Magliulo, Regine Maier, Ivan Mammarella, Giovanni Manca, Barbara Marcolla, Hank A. Margolis, Serena Marras, W. J. Massman, Mikhail Mastepanov, Roser Matamala, Jaclyn Hatala Matthes, Francesco Mazzenga, Harry McCaughey, Ian McHugh, Andrew M. S. McMillan, Lutz Merbold, Wayne S. Meyer, Tilden P. Meyers, S. D. Miller, Stefano Minerbi, Uta Moderow, Russell K. Monson, Leonardo Montagnani, Caitlin E. Moore, E.J. Moors, Virginie Moreaux, Christine Moureaux, J. William Munger, T. Nakai, Johan Neirynck, Zoran Nesic, Giacomo Nicolini, Asko Noormets, Matthew Northwood, Marcelo D. Nosetto, Yann Nouvellon, Kimberly A. Novick, W. C. Oechel, Jørgen E. Olesen, Jean‐Marc Ourcival, S. A. Papuga, Frans‐Jan W. Parmentier, Eugénie Paul‐Limoges, Marián Pavelka, Matthias Peichl, Elise Pendall, Richard P. Phillips, Kim Pilegaard, Norbert Pirk, Gabriela Posse, Thomas L. Powell, Heiko Prasse, Suzanne M. Prober, Serge Rambal, Üllar Rannik, Naama Raz‐Yaseef, Corinna Rebmann, David E. Reed, Víctor Resco de Dios, Natalia Restrepo‐Coupe, Borja R. Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, S. R. Saleska, Enrique P. Sánchez-Cañete, Z. M. Sánchez-Mejía, Hans Peter Schmid, Marius Schmidt, Karl Schneider, Frederik Schrader, Ivan Schroder, Russell L. Scott, Pavel Sedlák, Penélope Serrano-Ortíz, Changliang Shao, Peili Shi, Ivan Shironya, Lukas Siebicke, Ladislav Šigut, Richard Silberstein, Costantino Sirca, Donatella Spano, R. Steinbrecher, Robert M. Stevens, Cove Sturtevant, Andy Suyker, Torbern Tagesson, Satoru Takanashi, Yanhong Tang, Nigel Tapper, Jonathan E. Thom, Michele Tomassucci, Juha‐Pekka Tuovinen, S. P. Urbanski, Р. Валентини, M. K. van der Molen, Eva van Gorsel, J. van Huissteden, Andrej Varlagin, Joe Verfaillie, Timo Vesala, Caroline Vincke, Domenico Vitale, N. N. Vygodskaya, Jeffrey P. Walker, Elizabeth A. Walter‐Shea, Huimin Wang, R. J. Weber, Sebastian Westermann, Christian Wille, Steven C. Wofsy, Georg Wohlfahrt, Sebastian Wolf, William Woodgate, Yuelin Li, Roberto Zampedri, Junhui Zhang, Guoyi Zhou, Donatella Zona, D. Agarwal, S. Biraud, M. S. Torn, Dario Papale
Scientific Data, Volume 7, Issue 1

Abstract The FLUXNET2015 dataset provides ecosystem-scale data on CO 2 , water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.

DOI bib
COSORE: A community database for continuous soil respiration and other soil‐atmosphere greenhouse gas flux data
Ben Bond‐Lamberty, Danielle Christianson, Avni Malhotra, Stephanie C. Pennington, Debjani Sihi, Amir AghaKouchak, Hassan Anjileli, M. Altaf Arain, Juan J. Armestó, Samaneh Ashraf, Mioko Ataka, Dennis Baldocchi, T. Andrew Black, Nina Buchmann, Mariah S. Carbone, Shih Chieh Chang, Patrick Crill, Peter S. Curtis, Eric A. Davidson, Ankur R. Desai, John E. Drake, Tarek S. El‐Madany, Michael Gavazzi, Carolyn-Monika Görres, Christopher M. Gough, Michael L. Goulden, Jillian W. Gregg, O. Gutiérrez del Arroyo, Jin Sheng He, Takashi Hirano, Anya M. Hopple, Holly Hughes, Järvi Järveoja, Rachhpal S. Jassal, Jinshi Jian, Haiming Kan, Jason P. Kaye, Yuji Kominami, Naishen Liang, David A. Lipson, Catriona A. Macdonald, Kadmiel Maseyk, Kayla Mathes, Marguerite Mauritz, Melanie A. Mayes, Steven G. McNulty, Guofang Miao, Mirco Migliavacca, S. D. Miller, Chelcy Ford Miniat, Jennifer Goedhart Nietz, Mats Nilsson, Asko Noormets, Hamidreza Norouzi, Christine O’Connell, Bruce Osborne, Cecilio Oyonarte, Zhuo Pang, Matthias Peichl, Elise Pendall, Jorge F. Perez‐Quezada, Claire L. Phillips, Richard P. Phillips, James W. Raich, Alexandre A. Renchon, Nadine K. Ruehr, Enrique P. Sánchez‐Cañete, Matthew Saunders, K. E. Savage, Marion Schrumpf, Russell L. Scott, Ulli Seibt, Whendee L. Silver, Wu Sun, Daphne Szutu, Kentaro Takagi, Masahiro Takagi, Masaaki Teramoto, Mark G. Tjoelker, Susan E. Trumbore, Masahito Ueyama, Rodrigo Vargas, R. K. Varner, Joseph Verfaillie, Christoph S. Vogel, Jinsong Wang, G. Winston, Tana E. Wood, Juying Wu, Thomas Wutzler, Jiye Zeng, Tianshan Zha, Quan Zhang, Junliang Zou
Global Change Biology, Volume 26, Issue 12

Globally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil-to-atmosphere CO2 flux, commonly though imprecisely termed soil respiration (RS ), is one of the largest carbon fluxes in the Earth system. An increasing number of high-frequency RS measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well. Such high frequency data are an invaluable resource for understanding GHG fluxes, but lack a central database or repository. Here we describe the lightweight, open-source COSORE (COntinuous SOil REspiration) database and software, that focuses on automated, continuous and long-term GHG flux datasets, and is intended to serve as a community resource for earth sciences, climate change syntheses and model evaluation. Contributed datasets are mapped to a single, consistent standard, with metadata on contributors, geographic location, measurement conditions and ancillary data. The design emphasizes the importance of reproducibility, scientific transparency and open access to data. While being oriented towards continuously measured RS , the database design accommodates other soil-atmosphere measurements (e.g. ecosystem respiration, chamber-measured net ecosystem exchange, methane fluxes) as well as experimental treatments (heterotrophic only, etc.). We give brief examples of the types of analyses possible using this new community resource and describe its accompanying R software package.

2019

DOI bib
Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations
Olli Peltola, Timo Vesala, Yao Gao, Olle Räty, Pavel Alekseychik, Mika Aurela, Bogdan H. Chojnicki, Ankur R. Desai, A. J. Dolman, Eugénie Euskirchen, Thomas Friborg, Mathias Göckede, Manuel Helbig, Elyn Humphreys, Robert B. Jackson, Georg Jocher, Fortunat Joos, Janina Klatt, Sara Knox, Natalia Kowalska, Lars Kutzbach, Sebastian Lienert, Annalea Lohila, Ivan Mammarella, Daniel F. Nadeau, Mats Nilsson, Walter C. Oechel, Matthias Peichl, Thomas G. Pypker, William L. Quinton, Janne Rinne, Torsten Sachs, Mateusz Samson, Hans Peter Schmid, Oliver Sonnentag, Christian Wille, Donatella Zona, Tuula Aalto
Earth System Science Data, Volume 11, Issue 3

Abstract. Natural wetlands constitute the largest and most uncertain source of methane (CH4) to the atmosphere and a large fraction of them are found in the northern latitudes. These emissions are typically estimated using process (“bottom-up”) or inversion (“top-down”) models. However, estimates from these two types of models are not independent of each other since the top-down estimates usually rely on the a priori estimation of these emissions obtained with process models. Hence, independent spatially explicit validation data are needed. Here we utilize a random forest (RF) machine-learning technique to upscale CH4 eddy covariance flux measurements from 25 sites to estimate CH4 wetland emissions from the northern latitudes (north of 45∘ N). Eddy covariance data from 2005 to 2016 are used for model development. The model is then used to predict emissions during 2013 and 2014. The predictive performance of the RF model is evaluated using a leave-one-site-out cross-validation scheme. The performance (Nash–Sutcliffe model efficiency =0.47) is comparable to previous studies upscaling net ecosystem exchange of carbon dioxide and studies comparing process model output against site-level CH4 emission data. The global distribution of wetlands is one major source of uncertainty for upscaling CH4. Thus, three wetland distribution maps are utilized in the upscaling. Depending on the wetland distribution map, the annual emissions for the northern wetlands yield 32 (22.3–41.2, 95 % confidence interval calculated from a RF model ensemble), 31 (21.4–39.9) or 38 (25.9–49.5) Tg(CH4) yr−1. To further evaluate the uncertainties of the upscaled CH4 flux data products we also compared them against output from two process models (LPX-Bern and WetCHARTs), and methodological issues related to CH4 flux upscaling are discussed. The monthly upscaled CH4 flux data products are available at https://doi.org/10.5281/zenodo.2560163 (Peltola et al., 2019).

DOI bib
Solar‐induced chlorophyll fluorescence exhibits a universal relationship with gross primary productivity across a wide variety of biomes
Jingfeng Xiao, Xing Li, Bin He, M. Altaf Arain, Jason Beringer, Ankur R. Desai, Carmen Emmel, David Y. Hollinger, Alisa Krasnova, Ivan Mammarella, Steffen M. Noe, Penélope Serrano-Ortiz, Camilo Rey‐Sánchez, A. V. Rocha, Andrej Varlagin
Global Change Biology, Volume 25, Issue 4

In our recent study in Global Change Biology (Li et al., ), we examined the relationship between solar-induced chlorophyll fluorescence (SIF) measured from the Orbiting Carbon Observatory-2 (OCO-2) and gross primary productivity (GPP) derived from eddy covariance flux towers across the globe, and we discovered that there is a nearly universal relationship between SIF and GPP across a wide variety of biomes. This finding reveals the tremendous potential of SIF for accurately mapping terrestrial photosynthesis globally.

2018

DOI bib
Quantifying the effect of forest age in annual net forest carbon balance
Simon Besnard, Nuno Carvalhais, M. Altaf Arain, Andrew Black, S. de Bruin, Nina Buchmann, Alessandro Cescatti, Jiquan Chen, J.G.P.W. Clevers, Ankur R. Desai, Christopher M. Gough, Kateřina Havránková, Martin Herold, Lukas Hörtnagl, Martin Jung, Alexander Knohl, B. Kruijt, Lenka Krupková, Beverly E. Law, Anders Lindroth, Asko Noormets, Olivier Roupsard, R. Steinbrecher, Andrej Varlagin, Caroline Vincke, Markus Reichstein
Environmental Research Letters, Volume 13, Issue 12

Forests dominate carbon (C) exchanges between the terrestrial biosphere and the atmosphere on land. In the long term, the net carbon flux between forests and the atmosphere has been significantly impacted by changes in forest cover area and structure due to ecological disturbances and management activities. Current empirical approaches for estimating net ecosystem productivity (NEP) rarely consider forest age as a predictor, which represents variation in physiological processes that can respond differently to environmental drivers, and regrowth following disturbance. Here, we conduct an observational synthesis to empirically determine to what extent climate, soil properties, nitrogen deposition, forest age and management influence the spatial and interannual variability of forest NEP across 126 forest eddy-covariance flux sites worldwide. The empirical models explained up to 62% and 71% of spatio-temporal and across-site variability of annual NEP, respectively. An investigation of model structures revealed that forest age was a dominant factor of NEP spatio-temporal variability in both space and time at the global scale as compared to abiotic factors, such as nutrient availability, soil characteristics and climate. These findings emphasize the importance of forest age in quantifying spatio-temporal variation in NEP using empirical approaches.

DOI bib
Temporal Dynamics of Aerodynamic Canopy Height Derived From Eddy Covariance Momentum Flux Data Across North American Flux Networks
Housen Chu, Dennis Baldocchi, C. Poindexter, Michael Abraha, Ankur R. Desai, Gil Bohrer, M. Altaf Arain, Timothy J. Griffis, Peter D. Blanken, Thomas L. O’Halloran, R. Quinn Thomas, Quan Zhang, Sean P. Burns, J. M. Frank, Christian Dold, S. E. Brown, T. Andrew Black, Christopher M. Gough, B. E. Law, Xuhui Lee, Jiquan Chen, David E. Reed, W. J. Massman, Kenneth L. Clark, Jerry L. Hatfield, John H. Prueger, Rosvel Bracho, John M. Baker, Timothy A. Martin
Geophysical Research Letters, Volume 45, Issue 17

Author(s): Chu, H; Baldocchi, DD; Poindexter, C; Abraha, M; Desai, AR; Bohrer, G; Arain, MA; Griffis, T; Blanken, PD; O'Halloran, TL; Thomas, RQ; Zhang, Q; Burns, SP; Frank, JM; Christian, D; Brown, S; Black, TA; Gough, CM; Law, BE; Lee, X; Chen, J; Reed, DE; Massman, WJ; Clark, K; Hatfield, J; Prueger, J; Bracho, R; Baker, JM; Martin, TA | Abstract: Aerodynamic canopy height (ha) is the effective height of vegetation canopy for its influence on atmospheric fluxes and is a key parameter of surface-atmosphere coupling. However, methods to estimate ha from data are limited. This synthesis evaluates the applicability and robustness of the calculation of ha from eddy covariance momentum-flux data. At 69 forest sites, annual ha robustly predicted site-to-site and year-to-year differences in canopy heights (R2n=n0.88, 111nsite-years). At 23 cropland/grassland sites, weekly ha successfully captured the dynamics of vegetation canopies over growing seasons (R2ngn0.70 in 74nsite-years). Our results demonstrate the potential of flux-derived ha determination for tracking the seasonal, interannual, and/or decadal dynamics of vegetation canopies including growth, harvest, land use change, and disturbance. The large-scale and time-varying ha derived from flux networks worldwide provides a new benchmark for regional and global Earth system models and satellite remote sensing of canopy structure.

DOI bib
Solar‐induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes: First global analysis based on OCO‐2 and flux tower observations
Xing Li, Jingfeng Xiao, Bin He, M. Altaf Arain, Jason Beringer, Ankur R. Desai, Carmen Emmel, David Y. Hollinger, Alisa Krasnova, Ivan Mammarella, Steffen M. Noe, Penélope Serrano-Ortiz, Camilo Rey‐Sánchez, A. V. Rocha, Andrej Varlagin
Global Change Biology, Volume 24, Issue 9

Solar-induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite-observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF (1.3 km × 2.25 km) measured from the Orbiting Carbon Observatory-2 (OCO-2) provides the first opportunity to examine the SIF–GPP relationship at the ecosystem scale using flux tower GPP data. However, it remains unclear how strong the relationship is for each biome and whether a robust, universal relationship exists across a variety of biomes. Here we conducted the first global analysis of the relationship between OCO-2 SIF and tower GPP for a total of 64 flux sites across the globe encompassing eight major biomes. OCO-2 SIF showed strong correlations with tower GPP at both midday and daily timescales, with the strongest relationship observed for daily SIF at the 757 nm (R2 = 0.72, p < 0.0001). Strong linear relationships between SIF and GPP were consistently found for all biomes (R2 = 0.57–0.79, p < 0.0001) except evergreen broadleaf forests (R2 = 0.16, p < 0.05) at the daily timescale. A higher slope was found for C4 grasslands and croplands than for C3 ecosystems. The generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome-specific SIF–GPP relationship, and this finding is an important distinction and simplification compared to previous results. SIF was mainly driven by absorbed photosynthetically active radiation and was also influenced by environmental stresses (temperature and water stresses) that determine photosynthetic light use efficiency. OCO-2 SIF generally had a better performance for predicting GPP than satellite-derived vegetation indices and a light use efficiency model. The universal SIF–GPP relationship can potentially lead to more accurate GPP estimates regionally or globally. Our findings revealed the remarkable ability of finer resolution SIF observations from OCO-2 and other new or future missions (e.g., TROPOMI, FLEX) for estimating terrestrial photosynthesis across a wide variety of biomes and identified their potential and limitations for ecosystem functioning and carbon cycle studies.
Search
Co-authors
Venues