2023
Wildfire occurrence and severity is predicted to increase in the upcoming decades with severe negative impacts on human societies. The impacts of upwind wildfire activity on glacier melt, a critical source of freshwater for downstream environments, were investigated through analysis of field and remote sensing observations and modeling experiments for the 2015–2020 melt seasons at the well-instrumented Athabasca Glacier in the Canadian Rockies. Upwind wildfire activity influenced surface glacier melt through both a decrease in the surface albedo from deposition of soot on the glacier and through the impact of smoke on atmospheric conditions above the glacier. Athabasca Glacier on-ice weather station observations show days with dense smoke were warmer than clear, non-smoky days, and sustained a reduction in surface shortwave irradiance of 103 W m−2 during peak shortwave irradiance and an increase in longwave irradiance of 10 W m−2, producing an average 15 W m−2 decrease in net radiation. Albedo observed on-ice gradually decreased after the wildfires started, from a summer average of 0.29 in 2015 before the wildfires to as low as 0.16 in 2018 after extensive wildfires and remained low for two more melt seasons without substantial upwind wildfires. Reduced all-wave irradiance partly compensated for the increase in melt due to lowered albedo in those seasons when smoke was detected above Athabasca Glacier. In melt seasons without smoke, the suppressed albedo increased melt by slightly more than 10% compared to the simulations without fire-impacted albedo, increasing melt by 0.42 m. w.e. in 2019 and 0.37 m. w.e. in 2020.
Wildfire occurrence and severity is predicted to increase in the upcoming decades with severe negative impacts on human societies. The impacts of upwind wildfire activity on glacier melt, a critical source of freshwater for downstream environments, were investigated through analysis of field and remote sensing observations and modeling experiments for the 2015–2020 melt seasons at the well-instrumented Athabasca Glacier in the Canadian Rockies. Upwind wildfire activity influenced surface glacier melt through both a decrease in the surface albedo from deposition of soot on the glacier and through the impact of smoke on atmospheric conditions above the glacier. Athabasca Glacier on-ice weather station observations show days with dense smoke were warmer than clear, non-smoky days, and sustained a reduction in surface shortwave irradiance of 103 W m−2 during peak shortwave irradiance and an increase in longwave irradiance of 10 W m−2, producing an average 15 W m−2 decrease in net radiation. Albedo observed on-ice gradually decreased after the wildfires started, from a summer average of 0.29 in 2015 before the wildfires to as low as 0.16 in 2018 after extensive wildfires and remained low for two more melt seasons without substantial upwind wildfires. Reduced all-wave irradiance partly compensated for the increase in melt due to lowered albedo in those seasons when smoke was detected above Athabasca Glacier. In melt seasons without smoke, the suppressed albedo increased melt by slightly more than 10% compared to the simulations without fire-impacted albedo, increasing melt by 0.42 m. w.e. in 2019 and 0.37 m. w.e. in 2020.
Mountain glacierized headwaters are currently witnessing a transient shift in their hydrological and glaciological systems in response to rapid climate change. To characterize these changes, a robust understanding of the hydrological processes operating in the basin and their interactions is needed. Such an investigation was undertaken in the Peyto Glacier Research Basin, Canadian Rockies over 32 years (1988–2020). A distributed, physically based, uncalibrated glacier hydrology model was developed using the modular, object-oriented Cold Region Hydrological Modelling Platform to simulate both on and off-glacier high mountain processes and streamflow generation. The hydrological processes that generate streamflow from this alpine basin are characterized by substantial inter-annual variability over the 32 years. Snowmelt runoff always provided the largest fraction of annual streamflow (44% to 89%), with smaller fractional contributions occurring in higher streamflow years. Ice melt runoff provided 10% to 45% of annual streamflow volume, with higher fractions associated with higher flow years. Both rainfall and firn melt runoff contributed less than 13% of annual streamflow. Years with high streamflow were on average 1.43°C warmer than low streamflow years, and higher streamflow years had lower seasonal snow accumulation, earlier snowmelt and higher summer rainfall than years with lower streamflow. Greater ice exposure in warmer, low snowfall (high rainfall) years led to greater streamflow generation. The understanding gained here provides insight into how future climate and increased meteorological variability may impact glacier meltwater contributions to streamflow and downstream water availability as alpine glaciers continue to retreat.
2022
DOI
bib
abs
The cold regions hydrological modelling platform for hydrological diagnosis and prediction based on process understanding
John W. Pomeroy,
Thomas A. Brown,
Xing Fang,
Kevin Shook,
Dhiraj Pradhananga,
Robert Armstrong,
Phillip Harder,
Christopher B. Marsh,
Diogo Costa,
Sebastian A. Krogh,
Caroline Aubry‐Wake,
Holly J. Annand,
P. Lawford,
Zhaofeng He,
Mazda Kompani-Zare,
Jimmy Moreno
Journal of Hydrology, Volume 615
• Snow, glaciers, wetlands, frozen ground and permafrost needed in hydrological models. • Water quality export by coupling biochemical transformations to cold regions processes. • Hydrological sensitivity to land use depends on cold regions processes. • Strong cold regions hydrological sensitivity to climate warming. Cold regions involve hydrological processes that are not often addressed appropriately in hydrological models. The Cold Regions Hydrological Modelling platform (CRHM) was initially developed in 1998 to assemble and explore the hydrological understanding developed from a series of research basins spanning Canada and international cold regions. Hydrological processes and basin response in cold regions are simulated in a flexible, modular, object-oriented, multiphysics platform. The CRHM platform allows for multiple representations of forcing data interpolation and extrapolation, hydrological model spatial and physical process structures, and parameter values. It is well suited for model falsification, algorithm intercomparison and benchmarking, and has been deployed for basin hydrology diagnosis, prediction, land use change and water quality analysis, climate impact analysis and flood forecasting around the world. This paper describes CRHM’s capabilities, and the insights derived by applying the model in concert with process hydrology research and using the combined information and understanding from research basins to predict hydrological variables, diagnose hydrological change and determine the appropriateness of model structure and parameterisations.
Soot deposition from wildfires decreases snow and ice albedo and increases the absorption of shortwave radiation, which advances and accelerates melt. Soot deposition also induces algal growth, which further decreases snow and ice albedo. In recent years, increasingly severe and widespread wildfire activity has occurred in western Canada in association with climate change. In the summers of 2017 and 2018, westerly winds transported smoke from extensive record-breaking wildfires in British Columbia eastward to the Canadian Rockies, where substantial amounts of soot were deposited on high mountain glaciers, snowfields, and icefields. Several studies have addressed the problem of soot deposition on snow and ice, but the spatiotemporal resolution applied has not been compatible with studying mountain icefields that are extensive but contain substantial internal variability and have dynamical albedos. This study evaluates spatial patterns in the albedo decrease and net shortwave radiation (K*) increase caused by soot from intense wildfires in Western Canada deposited on the Columbia Icefield (151 km2), Canadian Rockies, during 2017 and 2018. Twelve Sentinel-2 images were used to generate high spatial resolution albedo retrievals during four summers (2017 to 2020) using a MODIS bidirectional reflectance distribution function (BRDF) model, which was employed to model the snow and ice reflectance anisotropy. Remote sensing estimates were evaluated using site-measured albedo on the icefield's Athabasca Glacier tongue, resulting in a R2, mean bias, and root mean square error (RMSE) of 0.68, 0.019, and 0.026, respectively. The biggest inter-annual spatially averaged soot-induced albedo declines were of 0.148 and 0.050 (2018 to 2020) for southeast-facing glaciers and the snow plateau, respectively. The highest inter-annual spatially-averaged soot-induced shortwave radiative forcing was 203 W/m2 for southeast-facing glaciers (2018 to 2020) and 106 W/m2 for the snow plateau (2017 to 2020). These findings indicate that snow albedo responded rapidly to and recovered rapidly from soot deposition. However, ice albedo remained low the year after fire, and this was likely related to a bio-albedo feedback involving microorganisms. Snow and ice K* were highest during low albedo years, especially for south-facing glaciers. These large-scale effects accelerated melt of the Columbia Icefield. The findings highlight the importance of using large-area high spatial resolution albedo estimates to analyze the effect of wildfire soot deposition on snow and ice albedo and K* on icefields, which is not possible using other approaches.
Abstract Debris-covered glaciers are an important component of the mountain cryosphere and influence the hydrological contribution of glacierized basins to downstream rivers. This study examines the potential to make estimates of debris thickness, a critical variable to calculate the sub-debris melt, using ground-based thermal infrared radiometry (TIR) images. Over four days in August 2019, a ground-based, time-lapse TIR digital imaging radiometer recorded sequential thermal imagery of a debris-covered region of Peyto Glacier, Canadian Rockies, in conjunction with 44 manual excavations of debris thickness ranging from 10 to 110 cm, and concurrent meteorological observations. Inferring the correlation between measured debris thickness and TIR surface temperature as a base, the effectiveness of linear and exponential regression models for debris thickness estimation from surface temperature was explored. Optimal model performance ( R 2 of 0.7, RMSE of 10.3 cm) was obtained with a linear model applied to measurements taken on clear nights just before sunrise, but strong model performances were also obtained under complete cloud cover during daytime or nighttime with an exponential model. This work presents insights into the use of surface temperature and TIR observations to estimate debris thickness and gain knowledge of the state of debris-covered glacial ice and its potential hydrological contribution.
Abstract Wildfire occurrence and severity is predicted to increase in the upcoming decades with severe negative impacts on human societies. The impacts of upwind wildfire activity on glacier melt, a critical source of freshwater for downstream environments, were investigated through analysis of field and remote sensing observations and modeling experiments for the 2015–2020 melt seasons at the well‐instrumented Athabasca Glacier in the Canadian Rockies. Upwind wildfire activity influenced surface glacier melt through both a decrease in the surface albedo from deposition of soot on the glacier and through the impact of smoke on atmospheric conditions above the glacier. Athabasca Glacier on‐ice weather station observations show days with dense smoke were warmer than clear, non‐smoky days, and sustained a reduction in surface shortwave irradiance of 103 W m −2 during peak shortwave irradiance and an increase in longwave irradiance of 10 W m −2 , producing an average 15 W m −2 decrease in net radiation. Albedo observed on‐ice gradually decreased after the wildfires started, from a summer average of 0.29 in 2015 before the wildfires to as low as 0.16 in 2018 after extensive wildfires and remained low for two more melt seasons without substantial upwind wildfires. Reduced all‐wave irradiance partly compensated for the increase in melt due to lowered albedo in those seasons when smoke was detected above Athabasca Glacier. In melt seasons without smoke, the suppressed albedo increased melt by slightly more than 10% compared to the simulations without fire‐impacted albedo, increasing melt by 0.42 m. w.e. in 2019 and 0.37 m. w.e. in 2020.
Abstract Wildfire occurrence and severity is predicted to increase in the upcoming decades with severe negative impacts on human societies. The impacts of upwind wildfire activity on glacier melt, a critical source of freshwater for downstream environments, were investigated through analysis of field and remote sensing observations and modeling experiments for the 2015–2020 melt seasons at the well‐instrumented Athabasca Glacier in the Canadian Rockies. Upwind wildfire activity influenced surface glacier melt through both a decrease in the surface albedo from deposition of soot on the glacier and through the impact of smoke on atmospheric conditions above the glacier. Athabasca Glacier on‐ice weather station observations show days with dense smoke were warmer than clear, non‐smoky days, and sustained a reduction in surface shortwave irradiance of 103 W m −2 during peak shortwave irradiance and an increase in longwave irradiance of 10 W m −2 , producing an average 15 W m −2 decrease in net radiation. Albedo observed on‐ice gradually decreased after the wildfires started, from a summer average of 0.29 in 2015 before the wildfires to as low as 0.16 in 2018 after extensive wildfires and remained low for two more melt seasons without substantial upwind wildfires. Reduced all‐wave irradiance partly compensated for the increase in melt due to lowered albedo in those seasons when smoke was detected above Athabasca Glacier. In melt seasons without smoke, the suppressed albedo increased melt by slightly more than 10% compared to the simulations without fire‐impacted albedo, increasing melt by 0.42 m. w.e. in 2019 and 0.37 m. w.e. in 2020.
2021
DOI
bib
abs
Hydrometeorological, glaciological and geospatial research data from the Peyto Glacier Research Basin in the Canadian Rockies
Dhiraj Pradhananga,
John W. Pomeroy,
Caroline Aubry‐Wake,
D. Scott Munro,
J. M. Shea,
M. N. Demuth,
N. H. Kirat,
Brian Menounos,
Kriti Mukherjee
Earth System Science Data, Volume 13, Issue 6
Abstract. This paper presents hydrometeorological, glaciological and geospatial data from the Peyto Glacier Research Basin (PGRB) in the Canadian Rockies. Peyto Glacier has been of interest to glaciological and hydrological researchers since the 1960s, when it was chosen as one of five glacier basins in Canada for the study of mass and water balance during the International Hydrological Decade (IHD, 1965–1974). Intensive studies of the glacier and observations of the glacier mass balance continued after the IHD, when the initial seasonal meteorological stations were discontinued, then restarted as continuous stations in the late 1980s. The corresponding hydrometric observations were discontinued in 1977 and restarted in 2013. Datasets presented in this paper include high-resolution, co-registered digital elevation models (DEMs) derived from original air photos and lidar surveys; hourly off-glacier meteorological data recorded from 1987 to the present; precipitation data from the nearby Bow Summit weather station; and long-term hydrological and glaciological model forcing datasets derived from bias-corrected reanalysis products. These data are crucial for studying climate change and variability in the basin and understanding the hydrological responses of the basin to both glacier and climate change. The comprehensive dataset for the PGRB is a valuable and exceptionally long-standing testament to the impacts of climate change on the cryosphere in the high-mountain environment. The dataset is publicly available from Federated Research Data Repository at https://doi.org/10.20383/101.0259 (Pradhananga et al., 2020).
2020
Abstract. This paper presents hydrometeorological, glaciological and geospatial data of the Peyto Glacier Research Basin (PGRB) in the Canadian Rockies. Peyto Glacier has been of interest to glaciological and hydrological researchers since the 1960s, when it was chosen as one of five glacier basins in Canada for the study of mass and water balance during the International Hydrological Decade (IHD, 1965–1974). Intensive studies of the glacier and observations of the glacier mass balance continued after the IHD, when the initial seasonal meteorological stations were discontinued, then restarted as continuous stations in the late 1980s. The corresponding hydrometric observations were discontinued in 1977 and restarted in 2013. Data sets presented in this paper include: high resolution, co-registered DEMs derived from original air photos and LiDAR surveys; hourly off-glacier meteorological data recorded from 1987 to present; precipitation data from nearby Bow Summit; and long-term hydrological and glaciological model forcing datasets derived from bias-corrected reanalysis products. These data are crucial for studying climate change and variability in the basin, and to understanding the hydrological responses of the basin to both glacier and climate change. The comprehensive data set for the PGRB is a valuable and exceptionally long-standing testament to the impacts of climate change on the cryosphere in the high mountain environment. The dataset is publicly available from Federated Research Data Repository at https://doi.org/10.20383/101.0259 (Pradhananga et al., 2020).
DOI
bib
abs
A new flow for Canadian young hydrologists: Key scientific challenges addressed by research cultural shifts
Caroline Aubry‐Wake,
Lauren Somers,
Hayley Alcock,
A. M. Anderson,
Amin Azarkhish,
Samuel Bansah,
Nicole M. Bell,
Kelly Biagi,
Mariana Castañeda-González,
Olivier Champagne,
Anna Chesnokova,
Devin Coone,
Thierry Gauthier,
Uttam Ghimire,
Nathan Glas,
Dylan M. Hrach,
Oi Yin Lai,
Pierrick Lamontagne‐Hallé,
Nicolas Leroux,
Laura Lyon,
Sohom Mandal,
Bouchra Nasri,
Nataša Popović,
Tracy Rankin,
Kabir Rasouli,
Alexis L. Robinson,
Palash Sanyal,
Nadine J. Shatilla,
Brandon Van Huizen,
Sophie Wilkinson,
Jessica Williamson,
Majid Zaremehrjardy
Hydrological Processes, Volume 34, Issue 8
A new flow for Canadian young hydrologists: Key scientific challenges addressed by research cultural shiftsCaroline Aubry-Wake1, Lauren D. Somers2,3, Hayley Alcock4, Aspen M. Anderson5, Amin Azarkhish6, Samuel Bansah7, Nicole M. Bell8, Kelly Biagi9, Mariana Castaneda-Gonzalez10, Olivier Champagne9, Anna Chesnokova10, Devin Coone6, Tasha-Leigh J. Gauthier11, Uttam Ghimire6, Nathan Glas6, Dylan M. Hrach11, Oi Yin Lai14, Pierrick Lamontagne-Halle3, Nicolas R. Leroux1, Laura Lyon3, Sohom Mandal12, Bouchra R. Nasri13, Natasa Popovic11, Tracy. E. Rankin14, Kabir Rasouli15, Alexis Robinson16, Palash Sanyal17, Nadine J. Shatilla9, 18, Brandon Van Huizen11, Sophie Wilkinson9, Jessica Williamson11, Majid Zaremehrjardy191 Centre for Hydrology, University of Saskatchewan, Saskatoon, SK, Canada2 Civil and Environmental Engineering, Massachusetts Institute of Technology, MA, USA3 Department of Earth and Planetary Sciences, McGill University, Montreal QC4 Department of Natural Resource Science, McGill University, Montreal, QC, Canada5 Department of Earth Sciences, Simon Fraser University, Burnaby, BC, Canada6 School of Engineering, University of Guelph, Ontario, ON, Canada7 Department of Geological Sciences, University of Manitoba, Winnipeg, Canada8 Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, Halifax, NS, Canada9 School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada.10 Department of Construction Engineering, Ecole de technologie superieure, Montreal, QC, Canada11 Department of Geography & Environmental Management, University of Waterloo, Waterloo, ON, Canada12 Department of Geography and Environmental Studies, Ryerson University, Toronto, ON, Canada13 Department of Mathematics and Statistics, McGill University, Montreal, Qc, Canada14 Geography Department, McGill University, Montreal, QC, Canada15 Meteorological Service of Canada, Environment and Climate Change Canada, Dorval, QC, Canada16 Department of Geography and Planning, University of Toronto, Toronto, ON17 Global Institute for Water Security, University of Saskatchewan.18 Lorax Environmental Services Ltd, Vancouver, BC, Canada.19 Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada