2023
Conifer forests historically have been resilient to wildfires in part due to thick organic soil layers that regulate combustion and post-fire moisture and vegetation change. However, recent shifts in fire activity in western North America may be overwhelming these resilience mechanisms with potential impacts for energy and carbon exchange. Here, we quantify the long-term recovery of the organic soil layer and its carbon pools across 511 forested plots. Our plots span ~ 140,000 km2 across two ecozones of the Northwest Territories, Canada, and allowed us to investigate the impacts of time-after-fire, site moisture class, and dominant canopy type on soil organic layer thickness and associated carbon stocks. Despite thinner soil organic layers in xeric plots immediately after fire, these drier stands supported faster post-fire recovery of the soil organic layer than in mesic plots. Unlike xeric or mesic stands, post-fire soil carbon accumulation rates in hydric plots were negligible despite wetter forested plots having greater soil organic carbon stocks immediately post-fire compared to other stands. While permafrost and high-water tables inhibit combustion and maintain thick organic soils immediately after fire, our results suggest that these wet stands are not recovering their pre-fire carbon stocks on a century timescale. We show that canopy conversion from black spruce to jack pine or deciduous dominance could reduce organic soil carbon stocks by 60–80% depending on stand age. Our two main findings—decreasing organic soil carbon storage with increasing deciduous cover and the lack of post-fire SOL recovery in hydric sites—have implications for the turnover time of carbon stocks in the western boreal forest region and also will impact energy fluxes by controlling albedo and surface soil moisture.
2022
DOI
bib
abs
Burned Area and Carbon Emissions Across Northwestern Boreal North America from 2001–2019
Stefano Potter,
S. Cooperdock,
Sander Veraverbeke,
Xanthe J. Walker,
Michelle C. Mack,
Scott J. Goetz,
Jennifer L. Baltzer,
L. L. Bourgeau-Chavez,
Arden Burrell,
Catherine M. Dieleman,
Nancy H. F. French,
Stijn Hantson,
Elizabeth Hoy,
Liza K. Jenkins,
Jill F. Johnstone,
Evan S. Kane,
Susan M. Natali,
James T. Randerson,
M. R. Turetsky,
Ellen Whitman,
Elizabeth B. Wiggins,
Brendan M. Rogers
Abstract. Fire is the dominant disturbance agent in Alaskan and Canadian boreal ecosystems and releases large amounts of carbon into the atmosphere. Burned area and carbon emissions have been increasing with climate change, which have the potential to alter the carbon balance and shift the region from a historic sink to a source. It is therefore critically important to track the spatiotemporal changes in burned area and fire carbon emissions over time. Here we developed a new burned area detection algorithm between 2001–2019 across Alaska and Canada at 500 meters (m) resolution that utilizes finer-scale 30 m Landsat imagery to account for land cover unsuitable for burning. This method strictly balances omission and commission errors at 500 m to derive accurate landscape- and regional-scale burned area estimates. Using this new burned area product, we developed statistical models to predict burn depth and carbon combustion for the same period within the NASA Arctic-Boreal Vulnerability Experiment (ABoVE) core and extended domain. Statistical models were constrained using a database of field observations across the domain and were related to a variety of response variables including remotely-sensed indicators of fire severity, fire weather indices, local climate, soils, and topographic indicators. The burn depth and aboveground combustion models performed best, with poorer performance for belowground combustion. We estimate 2.37 million hectares (Mha) burned annually between 2001–2019 over the ABoVE domain (2.87 Mha across all of Alaska and Canada), emitting 79.3 +/- 27.96 (+/- 1 standard deviation) Teragrams of carbon (C) per year, with a mean combustion rate of 3.13 +/- 1.17 kilograms C m-2. Mean combustion and burn depth displayed a general gradient of higher severity in the northwestern portion of the domain to lower severity in the south and east. We also found larger fire years and later season burning were generally associated with greater mean combustion. Our estimates are generally consistent with previous efforts to quantify burned area, fire carbon emissions, and their drivers in regions within boreal North America; however, we generally estimate higher burned area and carbon emissions due to our use of Landsat imagery, greater availability of field observations, and improvements in modeling. The burned area and combustion data sets described here (the ABoVE Fire Emissions Database, or ABoVE-FED) can be used for local to continental-scale applications of boreal fire science.
Rapid climate warming across northern high latitudes is leading to permafrost thaw and ecosystem carbon release while simultaneously impacting other biogeochemical cycles including nitrogen. We used a two-year laboratory incubation study to quantify concomitant changes in carbon and nitrogen pool quantity and quality as drivers of potential CO2 production in thawed permafrost soils from eight soil cores collected across the southern Northwest Territories (NWT), Canada. These data were contextualized via in situ annual thaw depth measurements from 2015 to 2019 at 40 study sites that varied in burn history. We found with increasing time since experimental thaw the dissolved carbon and nitrogen pool quality significantly declined, indicating sustained microbial processing and selective immobilization across both pools. Piecewise structural equation modeling revealed CO2 trends were predominantly predicted by initial soil carbon content with minimal influence of dissolved phase carbon. Using these results, we provide a first-order estimate of potential near-surface permafrost soil losses of up to 80 g C m−2 over one year in southern NWT, exceeding regional historic mean primary productivity rates in some areas. Taken together, this research provides mechanistic knowledge needed to further constrain the permafrost‑carbon feedback and parameterize Earth system models, while building on empirical evidence that permafrost soils are at high risk of becoming weaker carbon sinks or even significant carbon sources under a changing climate.
2020
DOI
bib
abs
Patterns of Ecosystem Structure and Wildfire Carbon Combustion Across Six Ecoregions of the North American Boreal Forest
Xanthe J. Walker,
Jennifer L. Baltzer,
Laura Bourgeau‐Chavez,
Nicola J. Day,
Catherine M. Dieleman,
Jill F. Johnstone,
Evan S. Kane,
Brendan M. Rogers,
M. R. Turetsky,
Sander Veraverbeke,
Michelle C. Mack
Frontiers in Forests and Global Change, Volume 3
Increases in fire frequency, extent, and severity are expected to strongly impact the structure and function of boreal forest ecosystems. An important function of the boreal forest is its ability to sequester and store carbon (C). Increasing disturbance from wildfires, emitting large amounts of C to the atmosphere, may create a positive feedback to climate warming. Variation in ecosystem structure and function throughout the boreal forest are important for predicting the effects of climate warming and changing fire regimes on C dynamics. In this study, we compiled data on soil characteristics, stand structure, pre-fire C pools, C loss from fire, and the potential drivers of these C metrics from 527 sites distributed across six ecoregions of North America’s western boreal forests. We assessed structural and functional differences between these fire-prone ecoregions using data from 417 recently burned sites (2004-2015) and estimated ecoregion-specific relationships between soil characteristics and depth from 167 of these sites plus an additional 110 sites (27 burned, 83 unburned). We found that northern boreal ecoregions were generally older, stored and emitted proportionally more belowground than aboveground C and exhibited lower rates of C accumulation over time than southern ecoregions. We present ecoregion specific estimates of depth-wise soil characteristics that are important for predicting C combustion from fire. As climate continues to warm and disturbance from wildfires increases, the C dynamics of these fire-prone ecoregions are likely to change with significant implications for the global C cycle and its feedbacks to climate change.
DOI
bib
abs
Fuel availability not fire weather controls boreal wildfire severity and carbon emissions
Xanthe J. Walker,
Brendan M. Rogers,
Sander Veraverbeke,
Jill F. Johnstone,
Jennifer L. Baltzer,
Kirsten Barrett,
Laura Bourgeau‐Chavez,
Nicola J. Day,
William J. de Groot,
Catherine M. Dieleman,
Scott J. Goetz,
Elizabeth Hoy,
Liza K. Jenkins,
Evan S. Kane,
Marc‐André Parisien,
Stefano Potter,
Edward A. G. Schuur,
M. R. Turetsky,
Ellen Whitman,
Michelle C. Mack
Nature Climate Change, Volume 10, Issue 12
Carbon (C) emissions from wildfires are a key terrestrial–atmosphere interaction that influences global atmospheric composition and climate. Positive feedbacks between climate warming and boreal wildfires are predicted based on top-down controls of fire weather and climate, but C emissions from boreal fires may also depend on bottom-up controls of fuel availability related to edaphic controls and overstory tree composition. Here we synthesized data from 417 field sites spanning six ecoregions in the northwestern North American boreal forest and assessed the network of interactions among potential bottom-up and top-down drivers of C emissions. Our results indicate that C emissions are more strongly driven by fuel availability than by fire weather, highlighting the importance of fine-scale drainage conditions, overstory tree species composition and fuel accumulation rates for predicting total C emissions. By implication, climate change-induced modification of fuels needs to be considered for accurately predicting future C emissions from boreal wildfires.