Colin P.R. McCarter


2021

DOI bib
Ecohydrological trade-offs from multiple peatland disturbances: The interactive effects of drainage, harvesting, restoration and wildfire in a southern Ontario bog
Colin P.R. McCarter, Sophie Wilkinson, Paul A. Moore, J. M. Waddington
Journal of Hydrology, Volume 601

• Greater restored moss cover decreased peat burn severity. • Deep vs shallow harvesting depth drove divergent post-fire soil water conditions. • Shallow harvest increased suitable conditions for Sphagnum establishment. • Deep harvest lowers the risk of subsequent peat ignition. • Deep harvest likely to promote longer-term carbon sequestration due to fewer fires. Peatland disturbances can disrupt the ecohydrological functions that sustain net carbon sequestration in peatlands. Anthropogenic disturbances, such as peatland drainage and harvesting, are often followed by peatland restoration that aims to return the carbon sink function. This is typically achieved by raising the water table and re-establishing keystone Sphagnum moss species. However, with an increasingly uncertain climate and intensifying land-use changes, the potential for multiple disturbances (such as co-occurring wildfires, drainage, and harvesting) to disrupt the ecohydrological feedbacks that support peatland function is increasing. Yet, few studies investigate the ecohydrological trade-offs induced by multiple disturbances in peatlands. To elucidate the complexities of multiple disturbances and restoration on Sphagnum re-establishment and wildfire potential, we studied a Deep and Shallow harvested area in a drained and restored peatland in southern Ontario, Canada that experienced a wildfire in 2012. Harvesting depth did not significantly increase the bulk density of the upper 32 cm of exposed peat, but the shallower harvest depth did significantly increase the depth of burn (DOB) due to the more varied remnant topography. The difference in topography of the shallower harvested area increased peat carbon losses (16.5 kg C m −2 ) from the wildfire relative to the deeper harvest area (15.1 kg C m −2 ). The difference in post-fire peat hydrophysical properties of the Deep and Shallow harvest area drove divergent soil water conditions. In the post-burn peat, the establishment of suitable conditions for the regeneration of Sphagnum mosses was more prevalent at the Shallow harvest areas but the higher soil water retention capabilities of the Deep harvest peat lowered the risk of subsequent peat ignition. This study highlights the complex interactions multiple disturbances have on peatland ecohydrology and that we urgently need to understand these interactions to better manage our shared peatland resources in an increasingly uncertain future.

2020

DOI bib
Pore-scale controls on hydrological and geochemical processes in peat: Implications on interacting processes
Colin P.R. McCarter, Fereidoun Rezanezhad, William L. Quinton, Behrad Gharedaghloo, Bernd Lennartz, Jonathan S. Price, Ryan F. Connon, Philippe Van Cappellen
Earth-Science Reviews, Volume 207

Peatlands are wetlands that provide important ecosystem services including carbon sequestration and water storage that respond to hydrological, biological, and biogeochemical processes. These processes are strongly influenced by the complex pore structure of peat soils. We explore the literature on peat pore structure and the implications for hydrological, biogeochemical, and microbial processes in peat, highlighting the gaps in our current knowledge and a path to move forward. Peat is an elastic and multi-porous structured organic soil. Surficial (near-surface) peats are typically dominated by large interconnected macropores that rapidly transmit water and solutes when saturated, but these large pores drain rapidly with a reduction in pore-water pressure, and disproportionally decrease the bulk effective hydraulic conductivity, thus water fluxes that drive ecohydrological functions. The more advanced state of decomposition of older (deeper) peat, with a greater abundance of small pores, restricts the loss of moisture at similar soil water pressures and is associated with higher unsaturated hydraulic conductivities. As evaporation and precipitation occur, peat soils shrink and swell, respectively, changing the hydrological connectivity that maintain physiological processes at the peat surface. Due to the disproportionate change in pore structure and associated hydraulic properties with state of decomposition, transport processes are limited at depth, creating a zone of enhanced transport in the less decomposed peat near the surface. At the micro-scale, rapid equilibration of solutes and water occurs between the mobile and immobile pores due to diffusion, resulting in pore regions with similar chemical concentrations that are not affected by advective fluxes. These immobile regions may be the primary sites for microbial biogeochemical processes in peat. Mass transfer limitations may therefore largely regulate belowground microbial turnover and, hence, biogeochemical cycling. For peat, the development of a comprehensive theory that links the hydrological, biological, and biogeochemical processes will require a concerted interdisciplinary effort. To that end, we have highlighted four primary areas to focus our collective research: 1) understanding the combined and interrelated effects of parent material, decomposition, and nutrient status on peat pore connectivity, macropore development and collapse, and solute transport, 2) determining the influence of changing pore structure due to freeze-thaw or dewatering on the hydrology and biogeochemistry, 3) better elucidating the non-equilibrium transport processes in peat, and 4) exploring the implications of peat’s pore structure on microbiological and biogeochemical processes.

DOI bib
Editorial: Wetland Biogeochemistry: Response to Environmental Change
Fereidoun Rezanezhad, Colin P.R. McCarter, Bernd Lennartz
Frontiers in Environmental Science, Volume 8