Dan K. Thompson


2021

DOI bib
Increasing fire and the decline of fire adapted black spruce in the boreal forest
Jennifer L. Baltzer, Nicola J. Day, Xanthe J. Walker, David F. Greene, Michelle C. Mack, Heather D. Alexander, Dominique Arseneault, Jennifer L. Barnes, Yves Bergeron, Yan Boucher, Laura Bourgeau‐Chavez, Clifford M. Brown, Suzanne Carrière, Brian K. Howard, Sylvie Gauthier, Marc‐André Parisien, Kirsten A. Reid, Brendan M. Rogers, Carl A. Roland, Luc Sirois, Sarah E. Stehn, Dan K. Thompson, M. R. Turetsky, Sander Veraverbeke, Ellen Whitman, Jian Yang, J. F. Johnstone
Proceedings of the National Academy of Sciences, Volume 118, Issue 45

Intensifying wildfire activity and climate change can drive rapid forest compositional shifts. In boreal North America, black spruce shapes forest flammability and depends on fire for regeneration. This relationship has helped black spruce maintain its dominance through much of the Holocene. However, with climate change and more frequent and severe fires, shifts away from black spruce dominance to broadleaf or pine species are emerging, with implications for ecosystem functions including carbon sequestration, water and energy fluxes, and wildlife habitat. Here, we predict that such reductions in black spruce after fire may already be widespread given current trends in climate and fire. To test this, we synthesize data from 1,538 field sites across boreal North America to evaluate compositional changes in tree species following 58 recent fires (1989 to 2014). While black spruce was resilient following most fires (62%), loss of resilience was common, and spruce regeneration failed completely in 18% of 1,140 black spruce sites. In contrast, postfire regeneration never failed in forests dominated by jack pine, which also possesses an aerial seed bank, or broad-leaved trees. More complete combustion of the soil organic layer, which often occurs in better-drained landscape positions and in dryer duff, promoted compositional changes throughout boreal North America. Forests in western North America, however, were more vulnerable to change due to greater long-term climate moisture deficits. While we find considerable remaining resilience in black spruce forests, predicted increases in climate moisture deficits and fire activity will erode this resilience, pushing the system toward a tipping point that has not been crossed in several thousand years.

2019

DOI bib
Soil Bacterial and Fungal Response to Wildfires in the Canadian Boreal Forest Across a Burn Severity Gradient
Thea Whitman, Ellen Whitman, Jamie Woolet, Mike D. Flannigan, Dan K. Thompson, Marc‐André Parisien

Global fire regimes are changing, with increases in wildfire frequency and severity expected for many North American forests over the next 100 years. Fires can result in dramatic changes to C stocks and can restructure plant and microbial communities, which can have long-lasting effects on ecosystem functions. We investigated wildfire effects on soil microbial communities (bacteria and fungi) in an extreme fire season in the northwestern Canadian boreal forest, using field surveys, remote sensing, and high-throughput amplicon sequencing. We found that fire occurrence, along with vegetation community, moisture regime, pH, total carbon, and soil texture are all significant predictors of soil microbial community composition. Communities become increasingly dissimilar with increasingly severe burns, and the burn severity index (an index of the fractional area of consumed organic soils and exposed mineral soils) best predicted total bacterial community composition, while burned/unburned was the best predictor for fungi. Globally abundant taxa were identified as significant positive fire responders, including the bacteria Massilia sp. (64x more abundant with fire) and Arthrobacter sp. (35x), and the fungi Penicillium sp. (22x) and Fusicladium sp. (12x) Bacterial and fungal co-occurrence network modules were characterized by fire responsiveness as well as pH and moisture regime. Building on the efforts of previous studies, our results identify specific fire-responsive microbial taxa and suggest that accounting for burn severity improves our understanding of their response to fires, with potentially important implications for ecosystem functions.

DOI bib
Soil bacterial and fungal response to wildfires in the Canadian boreal forest across a burn severity gradient
Thea Whitman, Ellen Whitman, Jamie Woolet, Mike D. Flannigan, Dan K. Thompson, Marc‐André Parisien
Soil Biology and Biochemistry, Volume 138

Abstract Global fire regimes are changing, with increases in wildfire frequency and severity expected for many North American forests over the next 100 years. Fires can result in dramatic changes to carbon (C) stocks and can restructure plant and microbial communities, with long-lasting effects on ecosystem functions. We investigated wildfire effects on soil microbial communities (bacteria and fungi) in an extreme fire season in the northwestern Canadian boreal forest, using field surveys, remote sensing, and high-throughput amplicon sequencing in upland and wetland sites. We hypothesized that vegetation community and soil pH would be the most important determinants of microbial community composition, while the effect of fire might not be significant, and found that fire occurrence, along with vegetation community, moisture regime, pH, total carbon, and soil texture are all significant predictors of soil microbial community composition. Burned communities become increasingly dissimilar to unburned communities with increasingly severe burns, and the burn severity index (an index of the fractional area of consumed organic soils and exposed mineral soils) best predicted total bacterial community composition, while whether a site was burned or not was the best predictor for fungi. Globally abundant taxa were identified as significant positive fire responders in this system, including the bacteria Massilia sp. (64 × more abundant with fire) and Arthrobacter sp. (35 × ), and the fungi Penicillium sp. (22 × ) and Fusicladium sp. (12 × ). Bacterial and fungal co-occurrence network modules were characterized by fire responsiveness as well as pH and moisture regime. Building on the efforts of previous studies, our results consider a particularly wide range of soils, vegetation, and burn severities, and we identify specific fire-responsive microbial taxa and suggest that accounting for burn severity improves our understanding of microbial response to fires.

DOI bib
Assessing the peatland hummock–hollow classification framework using high-resolution elevation models: implications for appropriate complexity ecosystem modeling
Paul A. Moore, Max Lukenbach, Dan K. Thompson, Nicholas Kettridge, Gustaf Granath, J. M. Waddington
Biogeosciences, Volume 16, Issue 18

Abstract. The hummock–hollow classification framework used to categorize peatland ecosystem microtopography is pervasive throughout peatland experimental designs and current peatland ecosystem modeling approaches. However, identifying what constitutes a representative hummock–hollow pair within a site and characterizing hummock–hollow variability within or between peatlands remains largely unassessed. Using structure from motion (SfM), high-resolution digital elevation models (DEMs) of hummock–hollow microtopography were used to (1) examine how much area needs to be sampled to characterize site-level microtopographic variation; and (2) examine the potential role of microtopographic shape/structure on biogeochemical fluxes using plot-level data from nine northern peatlands. To capture 95 % of site-level microtopographic variability, on average, an aggregate sampling area of 32 m2 composed of 10 randomly located plots was required. Both site- (i.e. transect data) and plot-level (i.e. SfM-derived DEM) results show that microtopographic variability can be described as a fractal at the submeter scale, where contributions to total variance are very small below a 0.5 m length scale. Microtopography at the plot level was often found to be non-bimodal, as assessed using a Gaussian mixture model (GMM). Our findings suggest that the non-bimodal distribution of microtopography at the plot level may result in an undersampling of intermediate topographic positions. Extended to the modeling domain, an underrepresentation of intermediate microtopographic positions is shown to lead to potentially large flux biases over a wide range of water table positions for ecosystem processes which are non-linearly related to water and energy availability at the moss surface. Moreover, our simple modeling results suggest that much of the bias can be eliminated by representing microtopography with several classes rather than the traditional two (i.e. hummock/hollow). A range of tools examined herein can be used to easily parameterize peatland models, from GMMs used as simple transfer functions to spatially explicit fractal landscapes based on simple power-law relations between microtopographic variability and scale.

2018

DOI bib
Wildfire as a major driver of recent permafrost thaw in boreal peatlands
Carolyn Gibson, L. Chasmer, Dan K. Thompson, William L. Quinton, Mike D. Flannigan, David Olefeldt
Nature Communications, Volume 9, Issue 1

Permafrost vulnerability to climate change may be underestimated unless effects of wildfire are considered. Here we assess impacts of wildfire on soil thermal regime and rate of thermokarst bog expansion resulting from complete permafrost thaw in western Canadian permafrost peatlands. Effects of wildfire on permafrost peatlands last for 30 years and include a warmer and deeper active layer, and spatial expansion of continuously thawed soil layers (taliks). These impacts on the soil thermal regime are associated with a tripled rate of thermokarst bog expansion along permafrost edges. Our results suggest that wildfire is directly responsible for 2200 ± 1500 km2 (95% CI) of thermokarst bog development in the study region over the last 30 years, representing ~25% of all thermokarst bog expansion during this period. With increasing fire frequency under a warming climate, this study emphasizes the need to consider wildfires when projecting future circumpolar permafrost thaw.

DOI bib
The effects of black spruce fuel management on surface fuel condition and peat burn severity in an experimental fire
Sophie Wilkinson, Paul A. Moore, Dan K. Thompson, B. M. Wotton, Steven Hvenegaard, Dave Schroeder, J. M. Waddington
Canadian Journal of Forest Research, Volume 48, Issue 12

In the boreal plains ecozone, black spruce (Picea mariana (Mill.) Britton, Sterns & Poggenb.) peatlands can represent large parts of the expanding wildland–urban interface (WUI) and wildland–indust...

DOI bib
Topoedaphic and Forest Controls on Post-Fire Vegetation Assemblies Are Modified by Fire History and Burn Severity in the Northwestern Canadian Boreal Forest
Ellen Whitman, Marc‐André Parisien, Dan K. Thompson, Mike D. Flannigan
Forests, Volume 9, Issue 3

Wildfires, which constitute the most extensive natural disturbance of the boreal biome, produce a broad range of ecological impacts to vegetation and soils that may influence post-fire vegetation assemblies and seedling recruitment. We inventoried post-fire understory vascular plant communities and tree seedling recruitment in the northwestern Canadian boreal forest and characterized the relative importance of fire effects and fire history, as well as non-fire drivers (i.e., the topoedaphic context and climate), to post-fire vegetation assemblies. Topoedaphic context, pre-fire forest structure and composition, and climate primarily controlled the understory plant communities and shifts in the ranked dominance of tree species (***8% and **13% of variance explained, respectively); however, fire and fire-affected soils were significant secondary drivers of post-fire vegetation. Wildfire had a significant indirect effect on understory vegetation communities through post-fire soil properties (**5%), and fire history and burn severity explained the dominance shifts of tree species (*7%). Fire-related variables were important explanatory variables in classification and regression tree models explaining the dominance shifts of four tree species (R2 = 0.43–0.65). The dominance of jack pine (Pinus banksiana Lamb.) and trembling aspen (Populus tremuloides Michx.) increased following fires, whereas that of black spruce (Picea mariana (Mill.) BSP.) and white spruce (Picea glauca (Moench) Voss) declined. The overriding importance of site and climate to post-fire vegetation assemblies may confer some resilience to disturbed forests; however, if projected increases in fire activity in the northwestern boreal forest are borne out, secondary pathways of burn severity, fire frequency, and fire effects on soils are likely to accelerate ongoing climate-driven shifts in species compositions.