David M. Janz


2022

DOI bib
Effects of in situ experimental selenium exposure on finescale dace (Phoxinus neogaeus) gut microbiome
Phillip J. Ankley, Stephanie D. Graves, Yuwei Xie, Abigail DeBofsky, Alana Weber, Markus Brinkmann, Vince Palace, Karsten Liber, Markus Hecker, David M. Janz, John P. Giesy
Environmental Research, Volume 212

Selenium (Se) is an environmental contaminant of global concern that can cause adverse effects in fish at elevated levels. Fish gut microbiome play essential roles in gastrointestinal function and host health and can be perturbed by environmental contaminants, including metals and metalloids. Here, an in-situ Se exposure of female finescale dace (Phoxinus neogaeus) using mesocosms was conducted to determine the impacts of Se accumulation on the gut microbiome and morphometric endpoints. Prior to this study, the gut microbiome of finescale dace, a widespread Cyprinid throughout North America, had not been characterized. Exposure to Se caused a hormetic response of alpha diversity of the gut microbiome, with greater diversity at the lesser concentration of 1.6 μg Se/L, relative to that of fish exposed to the greater concentration of 5.6 μg Se/L. Select gut microbiome taxa of fish were differentially abundant between aqueous exposure concentrations and significantly correlated with liver-somatic index (LSI). The potential effects of gut microbiome dysbiosis on condition of wild fish might be a consideration when assessing adverse effects of Se in aquatic environments. More research regarding effects of Se on field-collected fish gut microbiome and the potential adverse effects or benefits on the host is warranted.

DOI bib
Exposure to the Tire Rubber-Derived Contaminant 6PPD-Quinone Causes Mitochondrial Dysfunction <i>In Vitro</i>
Hannah Mahoney, Francisco C. da Silva, Catherine Roberts, Matthew Schultz, Xiaowen Ji, Alper James Alcaraz, David W. Montgomery, Summer Selinger, Jonathan K. Challis, John P. Giesy, Lynn P. Weber, David M. Janz, Steve Wiseman, Markus Hecker, Markus Brinkmann
Environmental Science & Technology Letters, Volume 9, Issue 9

2020

DOI bib
Energy stores and mercury concentrations in a common minnow (spottail shiner, <scp> <i>Notropis hudsonius</i> </scp> ) associated with a peaking hydroelectric dam
Derek J. Green, Timothy D. Jardine, Lynn P. Weber, David M. Janz
River Research and Applications, Volume 36, Issue 7

Peaking hydroelectric facilities release water from dams to match energy production with demand, often on a daily cycle. These fluctuating flows downstream can exert several potential stressors on organisms that may inhibit their growth, indirectly causing higher contaminant concentrations through reduced growth dilution. We collected spottail shiner (Notropis hudsonius) at two sites upstream and two sites downstream of a peaking hydroelectric dam in east‐central Saskatchewan, Canada, and compared their body condition, triglyceride concentrations, and mercury concentrations. Condition decline was observed in one of two downstream sites from August to September, and the lowest triglyceride concentrations were consistently found downstream of the dam where hydropeaking had the most perceptible effects on the shoreline. Mercury concentrations were significantly greater at both downstream sites relative to upstream. Despite these results, inconsistencies in response parameters across sites and time limited our ability to isolate the effects of hydropeaking as a causative agent and suggest indirect effects such as shifts in algal and macroinvertebrate communities may be responsible for our observations. These results suggest that hydroelectric power generation may indirectly increase mercury concentrations in downstream fish, but more research will be required to determine the specific mechanisms by which this occurs. The results and data also provide useful insights into the physiology of wild spottail shiner populations, which can help to inform the development of these fish as a North American sentinel species.

2019

DOI bib
Selenium oxyanion bioconcentration in natural freshwater periphyton
Blue E. Markwart, Karsten Liber, Yuwei Xie, Katherine Raes, Markus Hecker, David M. Janz, Lorne E. Doig
Ecotoxicology and Environmental Safety, Volume 180

Selenium (Se) enrichment has been demonstrated to vary by several orders of magnitude among species of planktonic algae. This is a substantial source of uncertainty when modelling Se biodynamics in aquatic systems. In addition, Se bioconcentration data are largely lacking for periphytic species of algae, and for multi-species periphyton biofilms, adding to the challenge of modelling Se transfer in periphyton-based food webs. To better predict Se dynamics in periphyton dominated, freshwater ecosystems, the goal of this study was to assess the relative influence of periphyton community composition on the uptake of waterborne Se oxyanions. Naturally grown freshwater periphyton communities, sampled from five different water bodies, were exposed to environmentally relevant concentrations of selenite [Se(IV)] or selenate [Se(VI)] (nominal concentrations of 5 and 25 μg Se L-1) under similar, controlled laboratory conditions for a period of 8 days. Unique periphyton assemblages were derived from the five different field sites, as confirmed by light microscopy and targeted DNA sequencing of the plastid 23S rRNA gene in algae. Selenium accumulation demonstrated a maximum of 23.6-fold difference for Se(IV) enrichment and 2.1-fold difference for Se(VI) enrichment across the periphyton/biofilm assemblages tested. The assemblage from one field site demonstrated both high accumulation of Se(IV) and iron, and was subjected to additional experimentation to elucidate the mechanism(s) of Se accumulation. Selenite accumulation (at nominal concentrations of 5 and 25 μg Se L-1 and mean pH of 7.5 across all treatment replicates) was assessed in both unaltered and heat-killed periphyton, and in periphyton from the same site grown without light to exclude phototrophic organisms. Following an exposure length of 8 days, all periphyton treatments showed similar levels of Se accumulation, indicating that much of the apparent uptake of Se(IV) was due to non-biological processes (i.e., surface adsorption). The results of this study will help reduce uncertainty in the prediction of Se dynamics and food-chain transfer in freshwater environments. Further exploration of the ecological consequences of extracellular adsorption of Se(IV) to periphyton, rather than intracellular absorption, is recommended to further refine predictions related to Se biodynamics in freshwater food webs.