David Olefeldt


2021

DOI bib
The Boreal-Arctic Wetland and Lake Dataset (BAWLD)
David Olefeldt, Mikael Hovemyr, McKenzie A. Kuhn, David Bastviken, Theodore J. Bohn, John Connolly, Patrick Crill, Eugénie Euskirchen, S. A. Finkelstein, Hélène Genet, Guido Grosse, Lorna I. Harris, Liam Heffernan, Manuel Helbig, Gustaf Hugelius, Ryan H. S. Hutchins, Sari Juutinen, Mark J. Lara, Avni Malhotra, Kristen L. Manies, A. David McGuire, Susan M. Natali, J. A. O’Donnell, Frans‐Jan W. Parmentier, Aleksi Räsänen, Christina Schädel, Oliver Sonnentag, Maria Strack, Suzanne E. Tank, Claire C. Treat, R. K. Varner, Tarmo Virtanen, Rebecca K. Warren, Jennifer D. Watts

Abstract. Methane emissions from boreal and arctic wetlands, lakes, and rivers are expected to increase in response to warming and associated permafrost thaw. However, the lack of appropriate land cover datasets for scaling field-measured methane emissions to circumpolar scales has contributed to a large uncertainty for our understanding of present-day and future methane emissions. Here we present the Boreal-Arctic Wetland and Lake Dataset (BAWLD), a land cover dataset based on an expert assessment, extrapolated using random forest modelling from available spatial datasets of climate, topography, soils, permafrost conditions, vegetation, wetlands, and surface water extents and dynamics. In BAWLD, we estimate the fractional coverage of five wetland, seven lake, and three river classes within 0.5 × 0.5° grid cells that cover the northern boreal and tundra biomes (17 % of the global land surface). Land cover classes were defined using criteria that ensured distinct methane emissions among classes, as indicated by a co-developed comprehensive dataset of methane flux observations. In BAWLD, wetlands occupied 3.2 × 106 km2 (14 % of domain) with a 95 % confidence interval between 2.8 and 3.8 × 106 km2. Bog, fen, and permafrost bog were the most abundant wetland classes, covering ~28 % each of the total wetland area, while the highest methane emitting marsh and tundra wetland classes occupied 5 and 12 %, respectively. Lakes, defined to include all lentic open-water ecosystems regardless of size, covered 1.4 × 106 km2 (6 % of domain). Low methane-emitting large lakes (> 10 km2) and glacial lakes jointly represented 78 % of the total lake area, while high-emitting peatland and yedoma lakes covered 18 and 4 %, respectively. Small (< 0.1 km2) glacial, peatland, and yedoma lakes combined covered 17 % of the total lake area, but contributed disproportionally to the overall spatial uncertainty of lake area with a 95 % confidence interval between 0.15 and 0.38 × 106 km2. Rivers and streams were estimated to cover 0.12 × 106 km2 (0.5 % of domain) of which 8 % was associated with high-methane emitting headwaters that drain organic-rich landscapes. Distinct combinations of spatially co-occurring wetland and lake classes were identified across the BAWLD domain, allowing for the mapping of “wetscapes” that will have characteristic methane emission magnitudes and sensitivities to climate change at regional scales. With BAWLD, we provide a dataset which avoids double-accounting of wetland, lake and river extents, and which includes confidence intervals for each land cover class. As such, BAWLD will be suitable for many hydrological and biogeochemical modelling and upscaling efforts for the northern Boreal and Arctic region, in particular those aimed at improving assessments of current and future methane emissions. Data is freely available at https://doi.org/10.18739/A2C824F9X (Olefeldt et al., 2021).

DOI bib
The Boreal–Arctic Wetland and Lake Dataset (BAWLD)
David Olefeldt, Mikael Hovemyr, McKenzie A. Kuhn, David Bastviken, Theodore J. Bohn, John Connolly, Patrick Crill, Eugénie Euskirchen, S. A. Finkelstein, Hélène Genet, Guido Grosse, Lorna I. Harris, Liam Heffernan, Manuel Helbig, Gustaf Hugelius, Ryan H. S. Hutchins, Sari Juutinen, Mark J. Lara, Avni Malhotra, Kristen L. Manies, A. David McGuire, Susan M. Natali, J. A. O’Donnell, Frans-Jan W. Parmentier, Aleksi Räsänen, Christina Schädel, Oliver Sonnentag, Maria Strack, Suzanne E. Tank, Claire C. Treat, Ruth K. Varner, Tarmo Virtanen, Rebecca K. Warren, Jennifer D. Watts
Earth System Science Data, Volume 13, Issue 11

Abstract. Methane emissions from boreal and arctic wetlands, lakes, and rivers are expected to increase in response to warming and associated permafrost thaw. However, the lack of appropriate land cover datasets for scaling field-measured methane emissions to circumpolar scales has contributed to a large uncertainty for our understanding of present-day and future methane emissions. Here we present the Boreal–Arctic Wetland and Lake Dataset (BAWLD), a land cover dataset based on an expert assessment, extrapolated using random forest modelling from available spatial datasets of climate, topography, soils, permafrost conditions, vegetation, wetlands, and surface water extents and dynamics. In BAWLD, we estimate the fractional coverage of five wetland, seven lake, and three river classes within 0.5 × 0.5∘ grid cells that cover the northern boreal and tundra biomes (17 % of the global land surface). Land cover classes were defined using criteria that ensured distinct methane emissions among classes, as indicated by a co-developed comprehensive dataset of methane flux observations. In BAWLD, wetlands occupied 3.2 × 106 km2 (14 % of domain) with a 95 % confidence interval between 2.8 and 3.8 × 106 km2. Bog, fen, and permafrost bog were the most abundant wetland classes, covering ∼ 28 % each of the total wetland area, while the highest-methane-emitting marsh and tundra wetland classes occupied 5 % and 12 %, respectively. Lakes, defined to include all lentic open-water ecosystems regardless of size, covered 1.4 × 106 km2 (6 % of domain). Low-methane-emitting large lakes (>10 km2) and glacial lakes jointly represented 78 % of the total lake area, while high-emitting peatland and yedoma lakes covered 18 % and 4 %, respectively. Small (<0.1 km2) glacial, peatland, and yedoma lakes combined covered 17 % of the total lake area but contributed disproportionally to the overall spatial uncertainty in lake area with a 95 % confidence interval between 0.15 and 0.38 × 106 km2. Rivers and streams were estimated to cover 0.12 × 106 km2 (0.5 % of domain), of which 8 % was associated with high-methane-emitting headwaters that drain organic-rich landscapes. Distinct combinations of spatially co-occurring wetland and lake classes were identified across the BAWLD domain, allowing for the mapping of “wetscapes” that have characteristic methane emission magnitudes and sensitivities to climate change at regional scales. With BAWLD, we provide a dataset which avoids double-accounting of wetland, lake, and river extents and which includes confidence intervals for each land cover class. As such, BAWLD will be suitable for many hydrological and biogeochemical modelling and upscaling efforts for the northern boreal and arctic region, in particular those aimed at improving assessments of current and future methane emissions. Data are freely available at https://doi.org/10.18739/A2C824F9X (Olefeldt et al., 2021).

2020

DOI bib
Shallow soils are warmer under trees and tall shrubs across Arctic and Boreal ecosystems
Heather Kropp, M. M. Loranty, Susan M. Natali, Alexander Kholodov, A. V. Rocha, Isla H. Myers‐Smith, Benjamin W Abbot, Jakob Abermann, E. Blanc‐Betes, Daan Blok, Gesche Blume‐Werry, Julia Boike, A. L. Breen, Sean M. P. Cahoon, Casper T. Christiansen, Thomas A. Douglas, Howard E. Epstein, G. V. Frost, Mathias Goeckede, Toke T. Høye, Steven D. Mamet, J. A. O’Donnell, David Olefeldt, Gareth K. Phoenix, V. G. Salmon, A. Britta K. Sannel, Sharon L. Smith, Oliver Sonnentag, Lydia Smith Vaughn, Mathew Williams, Bo Elberling, Laura Gough, Jan Hjort, Peter M. Lafleur, Eugénie Euskirchen, M.M.P.D. Heijmans, Elyn Humphreys, Hiroyasu Iwata, Benjamin M. Jones, M. Torre Jorgenson, Inge Grünberg, Yongwon Kim, James A. Laundre, Marguerite Mauritz, Anders Michelsen, Gabriela Schaepman‐Strub, Ken D. Tape, Masahito Ueyama, Bang-Yong Lee, Kirsty Langley, Magnus Lund
Environmental Research Letters, Volume 16, Issue 1

Abstract Soils are warming as air temperatures rise across the Arctic and Boreal region concurrent with the expansion of tall-statured shrubs and trees in the tundra. Changes in vegetation structure and function are expected to alter soil thermal regimes, thereby modifying climate feedbacks related to permafrost thaw and carbon cycling. However, current understanding of vegetation impacts on soil temperature is limited to local or regional scales and lacks the generality necessary to predict soil warming and permafrost stability on a pan-Arctic scale. Here we synthesize shallow soil and air temperature observations with broad spatial and temporal coverage collected across 106 sites representing nine different vegetation types in the permafrost region. We showed ecosystems with tall-statured shrubs and trees (>40 cm) have warmer shallow soils than those with short-statured tundra vegetation when normalized to a constant air temperature. In tree and tall shrub vegetation types, cooler temperatures in the warm season do not lead to cooler mean annual soil temperature indicating that ground thermal regimes in the cold-season rather than the warm-season are most critical for predicting soil warming in ecosystems underlain by permafrost. Our results suggest that the expansion of tall shrubs and trees into tundra regions can amplify shallow soil warming, and could increase the potential for increased seasonal thaw depth and increase soil carbon cycling rates and lead to increased carbon dioxide loss and further permafrost thaw.

DOI bib
Hydrological resilience to forest fire in the subarctic Canadian shield
Christopher Spence, N. Hedstrom, Suzanne E. Tank, William L. Quinton, David Olefeldt, Stefan Goodman, N.P. Dion
Hydrological Processes, Volume 34, Issue 25

Understanding the role of forest fires on water budgets of subarctic Precambrian Shield catchments is important because of growing evidence that fire activity is increasing. Most research has focused on assessing impacts on individual landscape units, so it is unclear how changes manifest at the catchment scale enough to alter water budgets. The objective of this study was to determine the water budget impact of a forest fire that partially burned a ~450 km2 subarctic Precambrian Shield basin. Water budget components were measured in a pair of catchments: one burnt and another unburnt. Burnt and unburnt areas had comparable net radiation, but thaw was deeper in burned areas. There were deeper snow packs in burns. Differences in streamflow between the catchments were within measurement uncertainty. Enhanced winter streamflow from the burned watershed was evident by icing growth at the streamflow gauge location, which was not observed in the unburned catchment. Wintertime water chemistry was also clearly elevated in dissolved organics, and organic‐associated nutrients. Application of a framework to assess hydrological resilience of watersheds to wildfire reveal that watersheds with both high bedrock and open water fractions are more resilient to hydrological change after fire in the subarctic shield, and resilience decreases with increasingly climatically wet conditions. This suggests significant changes in runoff magnitude, timing and water chemistry of many Shield catchments following wildfire depend on pre‐fire land cover distribution, the extent of the wildfire and climatic conditions that follow the fire.

DOI bib
Carbon release through abrupt permafrost thaw
M. R. Turetsky, Benjamin W. Abbott, Miriam C. Jones, K. M. Walter Anthony, David Olefeldt, Edward A. G. Schuur, Guido Grosse, Peter Kuhry, Gustaf Hugelius, Charles D. Koven, David M. Lawrence, Carolyn Gibson, A. Britta K. Sannel, A. David McGuire
Nature Geoscience, Volume 13, Issue 2

2019

DOI bib
Large loss of CO2 in winter observed across the northern permafrost region
Susan M. Natali, Jennifer D. Watts, Brendan M. Rogers, Stefano Potter, S. Ludwig, A. K. Selbmann, Patrick F. Sullivan, Benjamin W. Abbott, Kyle A. Arndt, Leah Birch, Mats Björkman, A. Anthony Bloom, Gerardo Celis, Torben R. Christensen, Casper T. Christiansen, R. Commane, Elisabeth J. Cooper, Patrick Crill, C. I. Czimczik, S. P. Davydov, Jinyang Du, Jocelyn Egan, Bo Elberling, Eugénie Euskirchen, Thomas Friborg, Hélène Genet, Mathias Göckede, Jordan P. Goodrich, Paul Grogan, Manuel Helbig, Elchin Jafarov, Julie D. Jastrow, Aram Kalhori, Yongwon Kim, J. S. Kimball, Lars Kutzbach, Mark J. Lara, Klaus Steenberg Larsen, Bang Yong Lee, Zhihua Liu, M. M. Loranty, Magnus Lund, Massimo Lupascu, Nima Madani, Avni Malhotra, Roser Matamala, J. W. Mcfarland, A. David McGuire, Anders Michelsen, C. Minions, Walter C. Oechel, David Olefeldt, Frans‐Jan W. Parmentier, Norbert Pirk, Benjamin Poulter, William L. Quinton, Fereidoun Rezanezhad, David Risk, Torsten Sachs, Kevin Schaefer, Niels Martin Schmidt, Edward A. G. Schuur, Philipp Semenchuk, Gaius R. Shaver, Oliver Sonnentag, Gregory Starr, Claire C. Treat, Mark P. Waldrop, Yihui Wang, Jeffrey M. Welker, Christian Wille, Xiaofeng Xu, Zhen Zhang, Qianlai Zhuang, Donatella Zona
Nature Climate Change, Volume 9, Issue 11

Recent warming in the Arctic, which has been amplified during the winter1-3, greatly enhances microbial decomposition of soil organic matter and subsequent release of carbon dioxide (CO2)4. However, the amount of CO2 released in winter is highly uncertain and has not been well represented by ecosystem models or by empirically-based estimates5,6. Here we synthesize regional in situ observations of CO2 flux from arctic and boreal soils to assess current and future winter carbon losses from the northern permafrost domain. We estimate a contemporary loss of 1662 Tg C yr-1 from the permafrost region during the winter season (October through April). This loss is greater than the average growing season carbon uptake for this region estimated from process models (-1032 Tg C yr-1). Extending model predictions to warmer conditions in 2100 indicates that winter CO2 emissions will increase 17% under a moderate mitigation scenario-Representative Concentration Pathway (RCP) 4.5-and 41% under business-as-usual emissions scenario-RCP 8.5. Our results provide a new baseline for winter CO2 emissions from northern terrestrial regions and indicate that enhanced soil CO2 loss due to winter warming may offset growing season carbon uptake under future climatic conditions.

DOI bib
A synthesis of three decades of hydrological research at Scotty Creek, NWT, Canada
William L. Quinton, Aaron Berg, Michael Braverman, Olivia Carpino, L. Chasmer, Ryan F. Connon, James R. Craig, Élise Devoie, Masaki Hayashi, Kristine M. Haynes, David Olefeldt, Alain Pietroniro, Fereidoun Rezanezhad, Robert A. Schincariol, Oliver Sonnentag
Hydrology and Earth System Sciences, Volume 23, Issue 4

Abstract. Scotty Creek, Northwest Territories (NWT), Canada, has been the focus of hydrological research for nearly three decades. Over this period, field and modelling studies have generated new insights into the thermal and physical mechanisms governing the flux and storage of water in the wetland-dominated regions of discontinuous permafrost that characterises much of the Canadian and circumpolar subarctic. Research at Scotty Creek has coincided with a period of unprecedented climate warming, permafrost thaw, and resulting land cover transformations including the expansion of wetland areas and loss of forests. This paper (1) synthesises field and modelling studies at Scotty Creek, (2) highlights the key insights of these studies on the major water flux and storage processes operating within and between the major land cover types, and (3) provides insights into the rate and pattern of the permafrost-thaw-induced land cover change and how such changes will affect the hydrology and water resources of the study region.

DOI bib
Permafrost collapse is accelerating carbon release
M. R. Turetsky, Benjamin W. Abbott, Miriam C. Jones, K. M. Walter Anthony, David Olefeldt, Edward A. G. Schuur, C. Koven, A. D. McGuire, Guido Grosse, Peter Kuhry, Gustaf Hugelius, David M. Lawrence, Carolyn Gibson, A. Britta K. Sannel
Nature, Volume 569, Issue 7754

The sudden collapse of thawing soils in the Arctic might double the warming from greenhouse gases released from tundra, warn Merritt R. Turetsky and colleagues. The sudden collapse of thawing soils in the Arctic might double the warming from greenhouse gases released from tundra, warn Merritt R. Turetsky and colleagues.

2018

DOI bib
Wildfire as a major driver of recent permafrost thaw in boreal peatlands
Carolyn Gibson, L. Chasmer, Dan K. Thompson, William L. Quinton, Mike D. Flannigan, David Olefeldt
Nature Communications, Volume 9, Issue 1

Permafrost vulnerability to climate change may be underestimated unless effects of wildfire are considered. Here we assess impacts of wildfire on soil thermal regime and rate of thermokarst bog expansion resulting from complete permafrost thaw in western Canadian permafrost peatlands. Effects of wildfire on permafrost peatlands last for 30 years and include a warmer and deeper active layer, and spatial expansion of continuously thawed soil layers (taliks). These impacts on the soil thermal regime are associated with a tripled rate of thermokarst bog expansion along permafrost edges. Our results suggest that wildfire is directly responsible for 2200 ± 1500 km2 (95% CI) of thermokarst bog development in the study region over the last 30 years, representing ~25% of all thermokarst bog expansion during this period. With increasing fire frequency under a warming climate, this study emphasizes the need to consider wildfires when projecting future circumpolar permafrost thaw.
Search
Co-authors
Venues