Frans-Jan W. Parmentier


2023

DOI bib
Carbon uptake in Eurasian boreal forests dominates the high‐latitude net ecosystem carbon budget
Jennifer D. Watts, Mary Farina, J. S. Kimball, Luke Schiferl, Zhihua Liu, Kyle A. Arndt, Donatella Zona, Ashley P. Ballantyne, Eugénie Euskirchen, Frans-Jan W. Parmentier, Manuel Helbig, Oliver Sonnentag, Torbern Tagesson, Janne Rinne, Hiroki Ikawa, Masahito Ueyama, Hideki Kobayashi, Torsten Sachs, Daniel F. Nadeau, John Kochendorfer, Marcin Jackowicz-Korczyński, Anna‐Maria Virkkala, Mika Aurela, R. Commane, Brendan Byrne, Leah Birch, Matthew S. Johnson, Nima Madani, Brendan M. Rogers, Jinyang Du, Arthur Endsley, K. E. Savage, B. Poulter, Zhen Zhang, L. Bruhwiler, Charles E. Miller, Scott J. Goetz, Walter C. Oechel
Global Change Biology, Volume 29, Issue 7

Arctic-boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic-boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003-2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco ), net ecosystem CO2 exchange (NEE; Reco - GPP), and terrestrial methane (CH4 ) emissions for the Arctic-boreal zone using a satellite data-driven process-model for northern ecosystems (TCFM-Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM-Arctic to obtain daily 1-km2 flux estimates and annual carbon budgets for the pan-Arctic-boreal region. Across the domain, the model indicated an overall average NEE sink of -850 Tg CO2 -C year-1 . Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4 emissions from tundra and boreal wetlands (not accounting for aquatic CH4 ) were estimated at 35 Tg CH4 -C year-1 . Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high-latitude carbon status and also indicates a continued need for integrated site-to-regional assessments to monitor the vulnerability of these ecosystems to climate change.

2021

DOI bib
The Boreal–Arctic Wetland and Lake Dataset (BAWLD)
David Olefeldt, Mikael Hovemyr, McKenzie A. Kuhn, David Bastviken, Theodore J. Bohn, John Connolly, Patrick Crill, Eugénie Euskirchen, S. A. Finkelstein, Hélène Genet, Guido Grosse, Lorna I. Harris, Liam Heffernan, Manuel Helbig, Gustaf Hugelius, Ryan H. S. Hutchins, Sari Juutinen, Mark J. Lara, Avni Malhotra, Kristen L. Manies, A. David McGuire, Susan M. Natali, J. A. O’Donnell, Frans-Jan W. Parmentier, Aleksi Räsänen, Christina Schädel, Oliver Sonnentag, Maria Strack, Suzanne E. Tank, Claire C. Treat, Ruth K. Varner, Tarmo Virtanen, Rebecca K. Warren, Jennifer D. Watts
Earth System Science Data, Volume 13, Issue 11

Abstract. Methane emissions from boreal and arctic wetlands, lakes, and rivers are expected to increase in response to warming and associated permafrost thaw. However, the lack of appropriate land cover datasets for scaling field-measured methane emissions to circumpolar scales has contributed to a large uncertainty for our understanding of present-day and future methane emissions. Here we present the Boreal–Arctic Wetland and Lake Dataset (BAWLD), a land cover dataset based on an expert assessment, extrapolated using random forest modelling from available spatial datasets of climate, topography, soils, permafrost conditions, vegetation, wetlands, and surface water extents and dynamics. In BAWLD, we estimate the fractional coverage of five wetland, seven lake, and three river classes within 0.5 × 0.5∘ grid cells that cover the northern boreal and tundra biomes (17 % of the global land surface). Land cover classes were defined using criteria that ensured distinct methane emissions among classes, as indicated by a co-developed comprehensive dataset of methane flux observations. In BAWLD, wetlands occupied 3.2 × 106 km2 (14 % of domain) with a 95 % confidence interval between 2.8 and 3.8 × 106 km2. Bog, fen, and permafrost bog were the most abundant wetland classes, covering ∼ 28 % each of the total wetland area, while the highest-methane-emitting marsh and tundra wetland classes occupied 5 % and 12 %, respectively. Lakes, defined to include all lentic open-water ecosystems regardless of size, covered 1.4 × 106 km2 (6 % of domain). Low-methane-emitting large lakes (>10 km2) and glacial lakes jointly represented 78 % of the total lake area, while high-emitting peatland and yedoma lakes covered 18 % and 4 %, respectively. Small (<0.1 km2) glacial, peatland, and yedoma lakes combined covered 17 % of the total lake area but contributed disproportionally to the overall spatial uncertainty in lake area with a 95 % confidence interval between 0.15 and 0.38 × 106 km2. Rivers and streams were estimated to cover 0.12 × 106 km2 (0.5 % of domain), of which 8 % was associated with high-methane-emitting headwaters that drain organic-rich landscapes. Distinct combinations of spatially co-occurring wetland and lake classes were identified across the BAWLD domain, allowing for the mapping of “wetscapes” that have characteristic methane emission magnitudes and sensitivities to climate change at regional scales. With BAWLD, we provide a dataset which avoids double-accounting of wetland, lake, and river extents and which includes confidence intervals for each land cover class. As such, BAWLD will be suitable for many hydrological and biogeochemical modelling and upscaling efforts for the northern boreal and arctic region, in particular those aimed at improving assessments of current and future methane emissions. Data are freely available at https://doi.org/10.18739/A2C824F9X (Olefeldt et al., 2021).