2023
Abstract. The amount and phase of cold season precipitation accumulating in the upper Saint John River basin are critical factors in determining spring runoff, ice-jams, and flooding in downstream communities. To study the impact of winter and spring storms on the snowpack in the upper Saint John River (SJR) basin, the Saint John River Experiment on Cold Season Storms (SAJESS) utilized meteorological instrumentation, upper air soundings, human observations, and hydrometeor macrophotography during winter/spring 2020–21. Here, we provide an overview of the SAJESS study area, field campaign, and existing data networks surrounding the upper SJR basin. Initially, meteorological instrumentation was co-located with an Environment and Climate Change Canada station near Edmundston, New Brunswick, in early December 2020. This was followed by an intensive observation period that involved manual observations, upper-air soundings, a multi-angle snowflake camera, macrophotography of solid hydrometeors, and advanced automated instrumentation throughout March and April 2021. The resulting datasets include optical disdrometer size and velocity distributions of hydrometeors, micro rain radar output, near-surface meteorological observations, and wind speed, temperature, pressure and precipitation amounts from a K63 Hotplate precipitation gauge, the first one operating in Canada. These data are publicly available from the Federated Research Data Repository at https://doi.org/10.20383/103.0591 (Thompson et al., 2022). We also include a synopsis of the data management plan and data processing, and a brief assessment of the rewards and challenges of utilizing community volunteers for hydro-meteorological citizen science.
2022
Abstract Winter precipitation is the source of many inconveniences in many regions of North America, for both infrastructure and the economy. The ice storm that hit the Canadian Maritime Provinces on 24–26 January 2017 remains one of the most expensive in history for the province of New Brunswick. Up to 50 mm of freezing rain caused power outages across the province, depriving up to one-third of New Brunswick residences of electricity, with some outages lasting 2 weeks. This study aims to use high-resolution atmospheric modeling to investigate the meteorological conditions during this severe storm and their contribution to major power outages. The persistence of a deep warm layer aloft, coupled with the slow movement of the associated low pressure system, contributed to widespread ice accumulation. When combined with the strong winds observed, extensive damage to electricity networks was inevitable. A 2-m temperature cold bias was identified between the simulation and the observations, in particular during periods of freezing rain. In the northern part of New Brunswick, cold-air advection helped keep temperatures below 0°C, while in southern regions, the 2-m temperature increased rapidly to slightly above 0°C because of radiational heating. The knowledge gained in this study on the processes associated with either maintaining or stopping freezing rain will enhance the ability to forecast and, in turn, to mitigate the hazards associated with those extreme events. Significance Statement A slow-moving low pressure system produced up to 50 mm of freezing rain for 31 h along the east coast of New Brunswick, Canada, on 24–26 January 2017, causing unprecedented power outages. Warm-air advection aloft, along with a combination of higher wind speeds and large amounts of ice accumulation, created ideal conditions for severe freezing rain. The storm began with freezing rain along the entire north–south cross section of eastern New Brunswick and changed to rain only in the south, when local temperatures increased to >0°C. Near-surface cold-air advection kept temperatures below 0°C in the north. Warming from the latent heat produced by freezing contributed to persistent near-0°C conditions during freezing rain.
Abstract Winter precipitation is the source of many inconveniences in many regions of North America, for both infrastructure and the economy. The ice storm that hit the Canadian Maritime Provinces on 24–26 January 2017 remains one of the most expensive in history for the province of New Brunswick. Up to 50 mm of freezing rain caused power outages across the province, depriving up to one-third of New Brunswick residences of electricity, with some outages lasting 2 weeks. This study aims to use high-resolution atmospheric modeling to investigate the meteorological conditions during this severe storm and their contribution to major power outages. The persistence of a deep warm layer aloft, coupled with the slow movement of the associated low pressure system, contributed to widespread ice accumulation. When combined with the strong winds observed, extensive damage to electricity networks was inevitable. A 2-m temperature cold bias was identified between the simulation and the observations, in particular during periods of freezing rain. In the northern part of New Brunswick, cold-air advection helped keep temperatures below 0°C, while in southern regions, the 2-m temperature increased rapidly to slightly above 0°C because of radiational heating. The knowledge gained in this study on the processes associated with either maintaining or stopping freezing rain will enhance the ability to forecast and, in turn, to mitigate the hazards associated with those extreme events. Significance Statement A slow-moving low pressure system produced up to 50 mm of freezing rain for 31 h along the east coast of New Brunswick, Canada, on 24–26 January 2017, causing unprecedented power outages. Warm-air advection aloft, along with a combination of higher wind speeds and large amounts of ice accumulation, created ideal conditions for severe freezing rain. The storm began with freezing rain along the entire north–south cross section of eastern New Brunswick and changed to rain only in the south, when local temperatures increased to >0°C. Near-surface cold-air advection kept temperatures below 0°C in the north. Warming from the latent heat produced by freezing contributed to persistent near-0°C conditions during freezing rain.
DOI
bib
abs
Storms and Precipitation Across the continental Divide Experiment (SPADE)
Julie M. Thériault,
Nicolas Leroux,
Ronald E. Stewart,
André Bertoncini,
Stephen J. Déry,
John W. Pomeroy,
Hadleigh D. Thompson,
Hilary M. Smith,
Zen Mariani,
Aurélie Desroches-Lapointe,
S. G. Mitchell,
Juris Almonte,
Julie M. Thériault,
Nicolas Leroux,
Ronald E. Stewart,
André Bertoncini,
Stephen J. Déry,
John W. Pomeroy,
Hadleigh D. Thompson,
Hilary M. Smith,
Zen Mariani,
Aurélie Desroches-Lapointe,
S. G. Mitchell,
Juris Almonte
Bulletin of the American Meteorological Society, Volume 103, Issue 11
Abstract The Canadian Rockies are a triple-continental divide, whose high mountains are drained by major snow-fed and rain-fed rivers flowing to the Pacific, Atlantic, and Arctic Oceans. The objective of the April–June 2019 Storms and Precipitation Across the continental Divide Experiment (SPADE) was to determine the atmospheric processes producing precipitation on the eastern and western sides of the Canadian Rockies during springtime, a period when upslope events of variable phase dominate precipitation on the eastern slopes. To do so, three observing sites across the divide were instrumented with advanced meteorological sensors. During the 13 observed events, the western side recorded only 25% of the eastern side’s precipitation accumulation, rainfall occurred rather than snowfall, and skies were mainly clear. Moisture sources and amounts varied markedly between events. An atmospheric river landfall in California led to moisture flowing persistently northward and producing the longest duration of precipitation on both sides of the divide. Moisture from the continental interior always produced precipitation on the eastern side but only in specific conditions on the western side. Mainly slow-falling ice crystals, sometimes rimed, formed at higher elevations on the eastern side (>3 km MSL), were lifted, and subsequently drifted westward over the divide during nonconvective storms to produce rain at the surface on the western side. Overall, precipitation generally crossed the divide in the Canadian Rockies during specific spring-storm atmospheric conditions although amounts at the surface varied with elevation, condensate type, and local and large-scale flow fields.
DOI
bib
abs
Storms and Precipitation Across the continental Divide Experiment (SPADE)
Julie M. Thériault,
Nicolas Leroux,
Ronald E. Stewart,
André Bertoncini,
Stephen J. Déry,
John W. Pomeroy,
Hadleigh D. Thompson,
Hilary M. Smith,
Zen Mariani,
Aurélie Desroches-Lapointe,
S. G. Mitchell,
Juris Almonte,
Julie M. Thériault,
Nicolas Leroux,
Ronald E. Stewart,
André Bertoncini,
Stephen J. Déry,
John W. Pomeroy,
Hadleigh D. Thompson,
Hilary M. Smith,
Zen Mariani,
Aurélie Desroches-Lapointe,
S. G. Mitchell,
Juris Almonte
Bulletin of the American Meteorological Society, Volume 103, Issue 11
Abstract The Canadian Rockies are a triple-continental divide, whose high mountains are drained by major snow-fed and rain-fed rivers flowing to the Pacific, Atlantic, and Arctic Oceans. The objective of the April–June 2019 Storms and Precipitation Across the continental Divide Experiment (SPADE) was to determine the atmospheric processes producing precipitation on the eastern and western sides of the Canadian Rockies during springtime, a period when upslope events of variable phase dominate precipitation on the eastern slopes. To do so, three observing sites across the divide were instrumented with advanced meteorological sensors. During the 13 observed events, the western side recorded only 25% of the eastern side’s precipitation accumulation, rainfall occurred rather than snowfall, and skies were mainly clear. Moisture sources and amounts varied markedly between events. An atmospheric river landfall in California led to moisture flowing persistently northward and producing the longest duration of precipitation on both sides of the divide. Moisture from the continental interior always produced precipitation on the eastern side but only in specific conditions on the western side. Mainly slow-falling ice crystals, sometimes rimed, formed at higher elevations on the eastern side (>3 km MSL), were lifted, and subsequently drifted westward over the divide during nonconvective storms to produce rain at the surface on the western side. Overall, precipitation generally crossed the divide in the Canadian Rockies during specific spring-storm atmospheric conditions although amounts at the surface varied with elevation, condensate type, and local and large-scale flow fields.
2021
DOI
bib
abs
Meteorological observations collected during the Storms and Precipitation Across the continental Divide Experiment (SPADE), April–June 2019
Julie M. Thériault,
Stephen J. Déry,
John W. Pomeroy,
Hilary M. Smith,
Juris Almonte,
André Bertoncini,
Robert W. Crawford,
Aurélie Desroches-Lapointe,
Mathieu Lachapelle,
Zen Mariani,
S. G. Mitchell,
Jeremy E. Morris,
Charlie Hébert-Pinard,
Peter Rodriguez,
Hadleigh D. Thompson
Earth System Science Data, Volume 13, Issue 3
Abstract. The continental divide along the spine of the Canadian Rockies in southwestern Canada is a critical headwater region for hydrological drainages to the Pacific, Arctic, and Atlantic oceans. Major flooding events are typically attributed to heavy precipitation on its eastern side due to upslope (easterly) flows. Precipitation can also occur on the western side of the divide when moisture originating from the Pacific Ocean encounters the west-facing slopes of the Canadian Rockies. Often, storms propagating across the divide result in significant precipitation on both sides. Meteorological data over this critical region are sparse, with few stations located at high elevations. Given the importance of all these types of events, the Storms and Precipitation Across the continental Divide Experiment (SPADE) was initiated to enhance our knowledge of the atmospheric processes leading to storms and precipitation on either side of the continental divide. This was accomplished by installing specialized meteorological instrumentation on both sides of the continental divide and carrying out manual observations during an intensive field campaign from 24 April–26 June 2019. On the eastern side, there were two field sites: (i) at Fortress Mountain Powerline (2076 m a.s.l.) and (ii) at Fortress Junction Service, located in a high-elevation valley (1580 m a.s.l.). On the western side, Nipika Mountain Resort, also located in a valley (1087 m a.s.l.), was chosen as a field site. Various meteorological instruments were deployed including two Doppler light detection and ranging instruments (lidars), three vertically pointing micro rain radars, and three optical disdrometers. The three main sites were nearly identically instrumented, and observers were on site at Fortress Mountain Powerline and Nipika Mountain Resort during precipitation events to take manual observations of precipitation type and microphotographs of solid particles. The objective of the field campaign was to gather high-temporal-frequency meteorological data and to compare the different conditions on either side of the divide to study the precipitation processes that can lead to catastrophic flooding in the region. Details on field sites, instrumentation used, and collection methods are discussed. Data from the study are publicly accessible from the Federated Research Data Repository at https://doi.org/10.20383/101.0221 (Thériault et al., 2020). This dataset will be used to study atmospheric conditions associated with precipitation events documented simultaneously on either side of a continental divide. This paper also provides a sample of the data gathered during a precipitation event.
2018
Abstract. This article presents the development of a sub-hourly database of hydrometeorological conditions collected in British Columbia's (BC's) Cariboo Mountains and surrounding area extending from 2006 to present. The Cariboo Alpine Mesonet (CAMnet) forms a network of 11 active hydrometeorological stations positioned at strategic locations across mid- to high elevations of the Cariboo Mountains. This mountain region spans 44 150 km2, forming the northern extension of the Columbia Mountains. Deep fjord lakes along with old-growth western redcedar and hemlock forests reside in the lower valleys, montane forests of Engelmann spruce, lodgepole pine and subalpine fir permeate the mid-elevations, while alpine tundra, glaciers and several large ice fields cover the higher elevations. The automatic weather stations typically measure air and soil temperature, relative humidity, atmospheric pressure, wind speed and direction, rainfall and snow depth at 15 min intervals. Additional measurements at some stations include shortwave and longwave radiation, near-surface air, skin, snow, or water temperature, and soil moisture, among others. Details on deployment sites, the instrumentation used and its precision, the collection and quality control process are provided. Instructions on how to access the database at Zenodo, an online public data repository, are also furnished (https://doi.org/10.5281/zenodo.1195043). Information on some of the challenges and opportunities encountered in maintaining continuous and homogeneous time series of hydrometeorological variables and remote field sites is provided. The paper also summarizes ongoing plans to expand CAMnet to better monitor atmospheric conditions in BC's mountainous terrain, efforts to push data online in (near-)real time, availability of ancillary data and lessons learned thus far in developing this mesoscale network of hydrometeorological stations in the data-sparse Cariboo Mountains.
Abstract. This article presents the development of a sub-hourly database of hydrometeorological conditions collected in British Columbia's Cariboo Mountains and surrounding area extending from 2006 to present. The Cariboo Alpine Mesonet (CAMnet) forms a network of 11 active hydrometeorological stations positioned at strategic locations across mid- to high elevations of the Cariboo Mountains. This mountain range spans 44,150 km2 forming the northern extension of the Columbia Mountains. Deep fjord lakes along with old-growth redcedar and hemlock forests reside in the lower valleys, montane forests of Engelmann spruce, lodgepole pine and subalpine fir permeate the mid-elevations while alpine tundra, glaciers and several large icefields cover the higher elevations. The automatic weather stations typically measure air and soil temperature, relative humidity, atmospheric pressure, wind speed and direction, rainfall, and snow depth at 15 minute intervals. Additional measurements at some stations include shortwave and longwave radiation, near-surface air, skin, snow or water temperature, and soil moisture among others. Details on deployment sites, the instrumentation used and its precision, the collection and quality control process are provided. Instructions on how to access the database at Zenodo, an online public data repository, are also furnished (https://doi.org/10.5281/zenodo.1195043). Information on some of the challenges and opportunities encountered in maintaining continuous and homogeneous time series of hydrometeorological variables and remote field sites is provided. The paper also summarizes ongoing plans to expand CAMnet to better monitor atmospheric conditions in BC's mountainous terrain, efforts to push data online in (near)real-time, availability of ancillary data, and lessons learned thus far in developing this mesoscale network of hydrometeorological stations in the data-sparse Cariboo Mountains.