2018
DOI
bib
abs
Recent global decline in endorheic basin water storages
Jida Wang,
Chunqiao Song,
J. T. Reager,
Fangfang Yao,
J. S. Famiglietti,
Yongwei Sheng,
Glen M. MacDonald,
Fanny Brun,
Hannes Müller Schmied,
Richard A. Marston,
Yoshihide Wada
Nature Geoscience, Volume 11, Issue 12
Endorheic (hydrologically landlocked) basins spatially concur with arid/semi-arid climates. Given limited precipitation but high potential evaporation, their water storage is vulnerable to subtle flux perturbations, which are exacerbated by global warming and human activities. Increasing regional evidence suggests a probably recent net decline in endorheic water storage, but this remains unquantified at a global scale. By integrating satellite observations and hydrological modelling, we reveal that during 2002–2016 the global endorheic system experienced a widespread water loss of about 106.3 Gt yr−1, attributed to comparable losses in surface water, soil moisture and groundwater. This decadal decline, disparate from water storage fluctuations in exorheic basins, appears less sensitive to El Nino–Southern Oscillation-driven climate variability, which implies a possible response to longer-term climate conditions and human water management. In the mass-conserved hydrosphere, such an endorheic water loss not only exacerbates local water stress, but also imposes excess water on exorheic basins, leading to a potential sea level rise that matches the contribution of nearly half of the land glacier retreat (excluding Greenland and Antarctica). Given these dual ramifications, we suggest the necessity for long-term monitoring of water storage variation in the global endorheic system and the inclusion of its net contribution to future sea level budgeting.
2017
DOI
bib
abs
Human–water interface in hydrological modelling: current status and future directions
Yoshihide Wada,
Marc F. P. Bierkens,
Ad de Roo,
Paul A. Dirmeyer,
J. S. Famiglietti,
Naota Hanasaki,
Megan Konar,
Junguo Liu,
Hannes Müller Schmied,
Taikan Oki,
Yadu Pokhrel,
Murugesu Sivapalan,
Tara J. Troy,
Albert I. J. M. van Dijk,
Tim van Emmerik,
M.H.J. van Huijgevoort,
H.A.J. van Lanen,
Charles J Vörösmarty,
Niko Wanders,
H. S. Wheater
Hydrology and Earth System Sciences, Volume 21, Issue 8
Abstract. Over recent decades, the global population has been rapidly increasing and human activities have altered terrestrial water fluxes to an unprecedented extent. The phenomenal growth of the human footprint has significantly modified hydrological processes in various ways (e.g. irrigation, artificial dams, and water diversion) and at various scales (from a watershed to the globe). During the early 1990s, awareness of the potential for increased water scarcity led to the first detailed global water resource assessments. Shortly thereafter, in order to analyse the human perturbation on terrestrial water resources, the first generation of large-scale hydrological models (LHMs) was produced. However, at this early stage few models considered the interaction between terrestrial water fluxes and human activities, including water use and reservoir regulation, and even fewer models distinguished water use from surface water and groundwater resources. Since the early 2000s, a growing number of LHMs have incorporated human impacts on the hydrological cycle, yet the representation of human activities in hydrological models remains challenging. In this paper we provide a synthesis of progress in the development and application of human impact modelling in LHMs. We highlight a number of key challenges and discuss possible improvements in order to better represent the human–water interface in hydrological models.