Heather Dixon


2022

DOI bib
The effects of roadways on lakes and ponds: a systematic review and assessment of knowledge gaps
Heather Dixon, Mariam Elmarsafy, Natasha Hannan, Vivian Gao, Caitlin Wright, Layana Khan, Derek K. Gray
Environmental Reviews

As the global population increases, the expansion of road networks has led to the destruction and disturbance of terrestrial and aquatic habitats. Road-related stressors have significant effects on both lotic and lentic habitats. While there are several systematic reviews that evaluate the effects of roads on lotic environments, there are none that consider their effects on lentic habitats only. We conducted a literature review to achieve two objectives: (1) to summarize the effects of roads on the physical, chemical, and biological properties of lentic environments; and (2) to identify biases and gaps in our current knowledge of the effects of roads on lentic habitats, so that we could find promising areas for future research. Our review found 172 papers published between 1970 and 2020. The most frequently studied stressors associated with roads included road salt and heavy metal contamination (67 and 43 papers, respectively), habitat fragmentation (37 papers), and landscape change (14 papers). These stressors can lead to alterations in conductivity and chloride levels, changes in lake stratification patterns, increases in heavy metal concentrations in water and organisms, and significant mortality as amphibians disperse across roadways. We also identified a variety of other stressors that may be understudied based on their frequency of appearance in our search results, including polycyclic aromatic hydrocarbons, road dust, increased accessibility, hydrological changes, noise pollution, dust suppressants, sedimentation, invasive species introductions, and water withdrawal. Our review indicated that there are strong geographic biases in published studies, with 57.0% examining North American sites and 30.2% examining European sites. Furthermore, there were taxonomic biases in the published literature, with most studies focusing on amphibians (41.7%), fish (15.6%), and macroinvertebrates (14.6%), while few considered zooplankton (8.3%), diatoms (7.3%), amoebas (5.2%), water birds (3.1%), reptiles (2.1%), and macrophytes (1.0%). Based on our review, we have identified promising areas for future research for each of the major stressors related to roadways. However, we speculate that rectifying the geographic and taxonomic bias of our current knowledge could significantly advance our understanding of the impacts of roads on lentic environments, thereby better informing environmental management of these important habitats.

2020

DOI bib
Reproductive status of walleye (Sander vitreus) and lake whitefish (Coregonus clupeaformis) in two large, shallow Canadian subarctic lakes
Heather Dixon, Grant Von Harrison, Andrea Lister, Deborah L. MacLatchy
Environmental Biology of Fishes, Volume 103, Issue 9

The reproductive status of walleye (Sander vitreus) and lake whitefish (Coregonus clupeaformis) is largely unstudied in the northern extent of their ranges. Tathlina Lake and Kakisa Lake are large, shallow lakes in the Northwest Territories, Canada, supporting important commercial and subsistence fisheries for these species while being threatened by climate change. Fish were sampled in both lakes across multiple years in the spring and autumn to assess differences in reproductive status in the pre- and post-spawning periods for both species. Condition factor (K), gonadosomatic index (GSI), liversomatic index (LSI), and fecundity were calculated, and plasma samples were also taken from each fish to determine levels of reproductive hormones, specifically 17β-estradiol in females, and 11-ketotestosterone in males. Significant temporal (intra- and interannual) and spatial (between lakes) variation was found for both species and both sexes for all metrics. Expected differences in hormones and indices of reproductive success between pre- and post- spawning periods were demonstrated. When compared with previously published data, a latitudinal gradient for LSI, GSI and fecundity was evident for walleye, but not for lake whitefish. The differences in the reproductive biology of lake whitefish and walleye in these two neighbouring lakes highlights limitations in the use of a reference lake approach in biomonitoring studies. The data in this study can be used and expanded upon to provide information for the sustainable management of these fish stocks for the future.