J. P. McNamara


2021

DOI bib
Stable isotopes of water reveal differences in plant – soil water relationships across northern environments
Doerthe Tetzlaff, J. M. Buttle, Sean K. Carey, Matthew J. Kohn, Hjalmar Laudon, J. P. McNamara, Aaron Smith, Matthias Sprenger, Chris Soulsby
Hydrological Processes, Volume 35, Issue 1

We compared stable isotopes of water in plant stem (xylem) water and soil collected over a complete growing season from five well-known long-term study sites in northern/cold regions. These spanned a decreasing temperature gradient from Bruntland Burn (Scotland), Dorset (Canadian Shield), Dry Creek (USA), Krycklan (Sweden), to Wolf Creek (northern Canada). Xylem water was isotopically depleted compared to soil waters, most notably for deuterium. The degree to which potential soil water sources could explain the isotopic composition of xylem water was assessed quantitatively using overlapping polygons to enclose respective data sets when plotted in dual isotope space. At most sites isotopes in xylem water from angiosperms showed a strong overlap with soil water; this was not the case for gymnosperms. In most cases, xylem water composition on a given sampling day could be better explained if soil water composition was considered over longer antecedent periods spanning many months. Xylem water at most sites was usually most dissimilar to soil water in drier summer months, although sites differed in the sequence of change. Open questions remain on why a significant proportion of isotopically depleted water in plant xylem cannot be explained by soil water sources, particularly for gymnosperms. It is recommended that future research focuses on the potential for fractionation to affect water uptake at the soil-root interface, both through effects of exchange between the vapour and liquid phases of soil water and the effects of mycorrhizal interactions. Additionally, in cold regions, evaporation and diffusion of xylem water in winter may be an important process.

2020

DOI bib
Contrasting storage-flux-age interactions revealed by catchment inter-comparison using a tracer-aided runoff model
Thea Ilaria Piovano, Doerthe Tetzlaff, Marco P. Maneta, J. M. Buttle, Sean K. Carey, Hjalmar Laudon, J. P. McNamara, Christopher Soulsby
Journal of Hydrology, Volume 590

Abstract Water storage dynamics modulate fluxes within catchments, control the rainfall-runoff response and regulate the velocity of water particles through mixing associated processes. Tracer-aided models are useful tools for tracking the interactions between catchment storage and fluxes, as they can capture both the celerity of the runoff response and the velocity of water particles revealed by tracer dynamics. The phase-space reconstruction of modelled systems can help in this regard; it traces the evolution of a dynamic system from a known initial state as phase trajectories in response to inputs. In this study, we compared the modelled storage-flux dynamics obtained from the application of a spatially distributed tracer-aided hydrological model (STARR) in five contrasting long-term research catchments with varying degrees of snow influence. The models were calibrated using a consistent multivariate methodology based on discharge, isotope composition and snowpack water equivalent. Analysis of extracted modelled storage dynamics gave insights into the system functioning. Large volumes of total stored water needed to be invoked at most sites to reconcile celerity and travel times to match observe discharge and isotope responses. This is because changes in dynamic storage from water balance considerations are small when compared to volume of storage necessary for observed tracer dampening. In the phase-space diagrams, the rates of storage change gave insights into the relative storage volume and seasonal catchment functioning. The storage increase was dominated by hydroclimatic inputs; thus, it presented a stochastic response. Furthermore, depending on the dominance of snow or rainfall inputs, catchments had different seasonal responses in storage dynamics. Decreases in storage were more predictable and reflected the efficiency of catchment drainage, yet at lower storages the influence of ET was also evident. Activation of flow paths due to overland and near-surface flows resulted in non-linearity of catchment functioning largely at high storage states. The storage-discharge relationships generally showed a non-linear distribution, with more scattered states during wettest condition. In turn, all the catchments exhibited an inverse storage effect, with modelled water ages decreasing with increasing storage as lateral flow paths were activated. Insights from this inter-comparison of storage-flux-age dynamics show the benefits of tracer-aided hydrological models in exploring their interactions at well-instrumented sites to better understand hydrological functioning of contrasting catchments.

2019

DOI bib
Climate-phenology-hydrology interactions in northern high latitudes: Assessing the value of remote sensing data in catchment ecohydrological studies
Hailong Wang, Doerthe Tetzlaff, J. M. Buttle, Sean K. Carey, Hjalmar Laudon, J. P. McNamara, Christopher Spence, Chris Soulsby
Science of The Total Environment, Volume 656

We assessed the hydrological implications of climate effects on vegetation phenology in northern environments by fusion of data from remote-sensing and local catchment monitoring. Studies using satellite data have shown earlier and later dates for the start (SOS) and end of growing seasons (EOS), respectively, in the Northern Hemisphere over the last 3 decades. However, estimates of the change greatly depend on the satellite data utilized. Validation with experimental data on climate-vegetation-hydrology interactions requires long-term observations of multiple variables which are rare and usually restricted to small catchments. In this study, we used two NDVI (normalized difference vegetation index) products (at ~25 & 0.5 km spatial resolutions) to infer SOS and EOS for six northern catchments, and then investigated the likely climate impacts on phenology change and consequent effects on catchment water yield, using both assimilated data (GLDAS: global land data assimilation system) and direct catchment observations. The major findings are: (1) The assimilated air temperature compared well with catchment observations (regression slopes and R2 close to 1), whereas underestimations of summer rainstorms resulted in overall underestimations of precipitation (regression slopes of 0.3-0.7, R2 ≥ 0.46). (2) The two NDVI products inferred different vegetation phenology characteristics. (3) Increased mean pre-season temperature significantly influenced the advance of SOS and delay of EOS. The precipitation influence was weaker, but delayed SOS corresponding to increased pre-season precipitation at most sites can be related to later snow melting. (4) Decreased catchment streamflow over the last 15 years could be related to the advance in SOS and extension of growing seasons. Greater streamflow reductions in the cold sites than the warm ones imply stronger climate warming impacts on vegetation and hydrology in colder northerly environments. The methods used in this study have potential for better understanding interactions between vegetation, climate and hydrology in observation-scarce regions.

DOI bib
Hillslope Hydrology in Global Change Research and Earth System Modeling
Ying Fan, Martyn P. Clark, David M. Lawrence, Sean Swenson, Lawrence E. Band, Susan L. Brantley, P. D. Brooks, W. E. Dietrich, Alejandro N. Flores, Gordon E. Grant, James W. Kirchner, D. S. Mackay, Jeffrey J. McDonnell, P. C. D. Milly, Pamela L. Sullivan, Christina Tague, Hoori Ajami, Nathaniel W. Chaney, Andreas Hartmann, P. Hazenberg, J. P. McNamara, Jon D. Pelletier, J. Perket, Elham Rouholahnejad Freund, Thorsten Wagener, Xubin Zeng, R. Edward Beighley, J. R. Buzan, Maoyi Huang, Ben Livneh, Binayak P. Mohanty, Bart Nijssen, Mohammad Safeeq, Chaopeng Shen, Willem van Verseveld, John Volk, Dai Yamazaki
Water Resources Research, Volume 55, Issue 2

Earth System Models (ESMs) are essential tools for understanding and predicting global change, but they cannot explicitly resolve hillslope‐scale terrain structures that fundamentally organize water, energy, and biogeochemical stores and fluxes at subgrid scales. Here we bring together hydrologists, Critical Zone scientists, and ESM developers, to explore how hillslope structures may modulate ESM grid‐level water, energy, and biogeochemical fluxes. In contrast to the one‐dimensional (1‐D), 2‐ to 3‐m deep, and free‐draining soil hydrology in most ESM land models, we hypothesize that 3‐D, lateral ridge‐to‐valley flow through shallow and deep paths and insolation contrasts between sunny and shady slopes are the top two globally quantifiable organizers of water and energy (and vegetation) within an ESM grid cell. We hypothesize that these two processes are likely to impact ESM predictions where (and when) water and/or energy are limiting. We further hypothesize that, if implemented in ESM land models, these processes will increase simulated continental water storage and residence time, buffering terrestrial ecosystems against seasonal and interannual droughts. We explore efficient ways to capture these mechanisms in ESMs and identify critical knowledge gaps preventing us from scaling up hillslope to global processes. One such gap is our extremely limited knowledge of the subsurface, where water is stored (supporting vegetation) and released to stream baseflow (supporting aquatic ecosystems). We conclude with a set of organizing hypotheses and a call for global syntheses activities and model experiments to assess the impact of hillslope hydrology on global change predictions.

2018

DOI bib
Storage, mixing, and fluxes of water in the critical zone across northern environments inferred by stable isotopes of soil water
Matthias Sprenger, Doerthe Tetzlaff, J. M. Buttle, Sean K. Carey, J. P. McNamara, Hjalmar Laudon, Nadine J. Shatilla, Chris Soulsby
Hydrological Processes, Volume 32, Issue 12

We thank Audrey Innes for isotope analysis at University of Aberdeen for Bruntland Burn and Krycklan sites, Johannes Tiwari (SLU) for isotope sampling in Krycklan, Pernilla Lofvenius (SLU) for providing PET data for Krycklan (via SITES), and Jeff McDonnell and Kim Janzen (University of Saskatchewan) for soil water isotope analysis for the Dorset and Wolf Creek sites. The Krycklan part was funded by the KAW Branch-Point project. We acknowledge the funding from the European Research Council (ERC, project GA 335910 VeWa). We thank the Editor and three anonymous reviewers for their critical comments during the peer-review process.