2023
DOI
bib
abs
Phenological assessment of transpiration: The stem-temp approach for determining start and end of season
Magali F. Nehemy,
Zoe Pierrat,
Jason Maillet,
Andrew D. Richardson,
J. Stutz,
Bruce Johnson,
Warren Helgason,
Alan Barr,
Colin P. Laroque,
Jeffrey J. McDonnell
Agricultural and Forest Meteorology, Volume 331
Field-based assessment of transpiration phenology in boreal tree species is a significant challenge. Here we develop an objective approach that uses stem radius change and its correlation with sapwood temperature to determine the timing of phenological changes in transpiration in mixed evergreen species. We test the stem-temp approach using a five year stem-radius dataset from black spruce (Picea mariana) and jack pine (Pinus banksiana) trees in Saskatchewan (2016–2020). We further compare transpiration phenological transition dates from this approach with tower-based phenological assessment from green chromatic coordinate derived from phenocam images, eddy-covariance-derived evapotranspiration and carbon uptake, tower-based measurements of solar-induced chlorophyll fluorescence and snowmelt timing. The stem-temp approach identified the start and end of four key transpiration phenological phases: (i) the end of temperature-driven cycles indicating the start of biological activity, (ii) the onset of stem rehydration, (iii) the onset of transpiration, and (iv) the end of transpiration-driven cycles. The proposed method is thus useful for characterizing the timing of changes in transpiration phenology and provides information about distinct processes that cannot be assessed with canopy-level phenological measurements alone.
2022
DOI
bib
abs
Snowmelt Water Use at Transpiration Onset: Phenology, Isotope Tracing, and Tree Water Transit Time
Magali F. Nehemy,
Jason Maillet,
Nia Perron,
Christoforos Pappas,
Oliver Sonnentag,
Jennifer L. Baltzer,
Colin P. Laroque,
Jeffrey J. McDonnell,
Magali F. Nehemy,
Jason Maillet,
Nia Perron,
Christoforos Pappas,
Oliver Sonnentag,
Jennifer L. Baltzer,
Colin P. Laroque,
Jeffrey J. McDonnell
Water Resources Research, Volume 58, Issue 9
Studies of tree water source partitioning have primarily focused on the growing season. However, little is yet known about the source of transpiration before, during, and after snowmelt when trees rehydrate and recommence transpiration in the spring. This study investigates tree water use during spring snowmelt following tree's winter stem shrinkage. We document the source of transpiration of three boreal forest tree species—Pinus banksiana, Picea mariana, and Larix laricina—by combining observations of weekly isotopic signatures (δ18O and δ2H) of xylem, soil water, rainfall and snowmelt with measurements of soil moisture dynamics, snow depth and high-resolution temporal measurements of stem radius changes and sap flow. Our data shows that the onset of stem rehydration and transpiration overlaps with snowmelt for evergreens. During rehydration and transpiration onset, xylem water at the canopy reflected a constant pre-melt isotopic signature likely showing late fall conditions. As snowmelt infiltrates the soil and recharges the soil matrix, soil water shows a rapid isotopic shift to depleted-snowmelt water values. While there was an overlap between snowmelt and transpiration timing, xylem and soil water isotopic values did not overlap during transpiration onset. Our data showed 1–2-week delay in the shift in xylem water from pre-melt to clear snowmelt-depleted water signatures in evergreen species. This delay appears to be controlled by tree water transit time that was in the order of 9–18 days. Our study shows that snowmelt is a key source for stem rehydration and transpiration in the boreal forest during spring onset.
DOI
bib
abs
Snowmelt Water Use at Transpiration Onset: Phenology, Isotope Tracing, and Tree Water Transit Time
Magali F. Nehemy,
Jason Maillet,
Nia Perron,
Christoforos Pappas,
Oliver Sonnentag,
Jennifer L. Baltzer,
Colin P. Laroque,
Jeffrey J. McDonnell,
Magali F. Nehemy,
Jason Maillet,
Nia Perron,
Christoforos Pappas,
Oliver Sonnentag,
Jennifer L. Baltzer,
Colin P. Laroque,
Jeffrey J. McDonnell
Water Resources Research, Volume 58, Issue 9
Studies of tree water source partitioning have primarily focused on the growing season. However, little is yet known about the source of transpiration before, during, and after snowmelt when trees rehydrate and recommence transpiration in the spring. This study investigates tree water use during spring snowmelt following tree's winter stem shrinkage. We document the source of transpiration of three boreal forest tree species—Pinus banksiana, Picea mariana, and Larix laricina—by combining observations of weekly isotopic signatures (δ18O and δ2H) of xylem, soil water, rainfall and snowmelt with measurements of soil moisture dynamics, snow depth and high-resolution temporal measurements of stem radius changes and sap flow. Our data shows that the onset of stem rehydration and transpiration overlaps with snowmelt for evergreens. During rehydration and transpiration onset, xylem water at the canopy reflected a constant pre-melt isotopic signature likely showing late fall conditions. As snowmelt infiltrates the soil and recharges the soil matrix, soil water shows a rapid isotopic shift to depleted-snowmelt water values. While there was an overlap between snowmelt and transpiration timing, xylem and soil water isotopic values did not overlap during transpiration onset. Our data showed 1–2-week delay in the shift in xylem water from pre-melt to clear snowmelt-depleted water signatures in evergreen species. This delay appears to be controlled by tree water transit time that was in the order of 9–18 days. Our study shows that snowmelt is a key source for stem rehydration and transpiration in the boreal forest during spring onset.
2020
DOI
bib
abs
Aboveground tree growth is a minor and decoupled fraction of boreal forest carbon input
Christoforos Pappas,
Jason Maillet,
Sharon Rakowski,
Jennifer L. Baltzer,
Alan G. Barr,
T. Andrew Black,
Simone Fatichi,
Colin P. Laroque,
Ashley M. Matheny,
Alexandre Roy,
Oliver Sonnentag,
Tianshan Zha
Agricultural and Forest Meteorology, Volume 290
• We reconstructed time series of boreal tree growth with a biometric approach. • Aboveground tree growth was a minor and decoupled fraction of carbon input. • Partitioned estimates of tree carbon sink are valuable observational constraints. • Such observational constraints can be used for model validation and policy making. The boreal biome accounts for approximately one third of the terrestrial carbon (C) sink. However, estimates of its individual C pools remain uncertain. Here, focusing on the southern boreal forest, we quantified the magnitude and temporal dynamics of C allocation to aboveground tree growth at a mature black spruce ( Picea mariana )-dominated forest stand in Saskatchewan, Canada. We reconstructed aboveground tree biomass increments (AGBi) using a biometric approach, i.e., species-specific allometry combined with forest stand characteristics and tree ring widths collected with a C-oriented sampling design. We explored the links between boreal tree growth and ecosystem C input by comparing AGBi with eddy-covariance-derived ecosystem C fluxes from 1999 to 2015 and we synthesized our findings with a refined meta-analysis of published values of boreal forest C use efficiency (CUE). Mean AGBi at the study site was decoupled from ecosystem C input and equal to 71 ± 7 g C m –2 (1999–2015), which is only a minor fraction of gross ecosystem production (GEP; i.e., AGBi / GEP ≈ 9 %). Moreover, C allocation to AGBi remained stable over time (AGBi / GEP; –0.0001 yr –1 ; p -value=0.775), contrary to significant trends in GEP (+5.72 g C m –2 yr –2 ; p -value=0.02) and CUE (–0.0041 yr –1 , p -value=0.007). CUE was estimated as 0.50 ± 0.03 at the study area and 0.41 ± 0.12 across the reviewed boreal forests. These findings highlight the importance of belowground tree C investments, together with the substantial contribution of understory, ground cover and soil to the boreal forest C balance. Our quantitative insights into the dynamics of aboveground boreal tree C allocation offer additional observational constraints for terrestrial ecosystem models that are often biased in converting C input to biomass, and can guide forest-management strategies for mitigating carbon dioxide emissions.
2018
DOI
bib
abs
Boreal tree hydrodynamics: asynchronous, diverging, yet complementary
Christoforos Pappas,
Ashley M. Matheny,
Jennifer L. Baltzer,
Alan G. Barr,
T. Andrew Black,
Gil Bohrer,
Matteo Detto,
Jason Maillet,
Alexandre Roy,
Oliver Sonnentag,
Jilmarie Stephens
Tree Physiology, Volume 38, Issue 7
Water stress has been identified as a key mechanism of the contemporary increase in tree mortality rates in northwestern North America. However, a detailed analysis of boreal tree hydrodynamics and their interspecific differences is still lacking. Here we examine the hydraulic behaviour of co-occurring larch (Larix laricina) and black spruce (Picea mariana), two characteristic boreal tree species, near the southern limit of the boreal ecozone in central Canada. Sap flux density (Js), concurrently recorded stem radius fluctuations and meteorological conditions are used to quantify tree hydraulic functioning and to scrutinize tree water-use strategies. Our analysis revealed asynchrony in the diel hydrodynamics of the two species with the initial rise in Js occurring 2 h earlier in larch than in black spruce. Interspecific differences in larch and black spruce crown architecture explained the observed asynchrony in their hydraulic functioning. Furthermore, the two species exhibited diverging stomatal regulation strategies with larch and black spruce employing relatively isohydric and anisohydric behaviour, respectively. Such asynchronous and diverging tree-level hydrodynamics provide new insights into the ecosystem-level complementarity in tree form and function, with implications for understanding boreal forests' water and carbon dynamics and their resilience to environmental stress.