Jennifer Lento


2021

DOI bib
Arctic freshwater biodiversity: Establishing baselines, trends, and drivers of ecological change
Joseph M. Culp, Willem Goedkoop, Tom Christensen, Kirsten Christoffersen, Elena Fefilova, Petri Liljaniemi, Anna А. Novichkova, Jón S. Ólafsson, Steinar Sandøy, Christian E. Zimmerman, Jennifer Lento
Freshwater Biology, Volume 67, Issue 1

Climate change is predicted to have dramatic effects on Arctic freshwater ecosystems through changes to the abiotic template that are expected to influence biodiversity. Changes are already ongoing in Arctic systems, but there is a lack of coordinated monitoring of Arctic freshwaters that hinders our ability to assess changes in biodiversity. To address the need for coordinated monitoring on a circumpolar scale, the Arctic Council working group, Conservation of Arctic Flora and Fauna, established the Circumpolar Biodiversity Monitoring Program, which is an adaptive monitoring program for the Arctic centred around four ecosystem themes (i.e., Freshwater, Terrestrial, Coastal, Marine). The freshwater theme developed a monitoring plan for Arctic freshwater biodiversity and recently completed the first assessment of status and trends in Arctic freshwater biodiversity. Circumpolar Biodiversity Monitoring Program–Freshwater has compiled and analysed a database of Arctic freshwater monitoring data to form the first report of the state of circumpolar Arctic freshwater biodiversity. This special issue presents the scientific analyses that underlie the Circumpolar Biodiversity Monitoring Program–Freshwater report and provides analyses of spatial and temporal diversity patterns and the multiple-stressor scenarios that act on the biological assemblages and biogeochemistry of Arctic lakes and rivers. This special issue includes regional patterns for selected groups of organisms in Arctic rivers and lakes of northern Europe, Russia, and North America. Circumpolar assessments for benthic diatoms, macrophytes, plankton, benthic macroinvertebrates, and fish demonstrate how climate change and associated environmental drivers affect freshwater biodiversity. Also included are papers on spatial and temporal trends in water chemistry across the circumpolar region, and a systematic review of documented Indigenous Knowledge that demonstrates its potential to support assessment and conservation of Arctic freshwaters. This special issue includes the first circumpolar assessment of trends in Arctic freshwater biodiversity and provides important baseline information for future assessments and studies. It represents the largest compilation and assessment of Arctic freshwater biodiversity data to date and strives to provide a holistic view of ongoing change in these ecosystems to support future monitoring efforts. By identifying gaps in monitoring data across the circumpolar region, as well as identifying best practices for monitoring and assessment, this special issue presents an important resource for researchers, policy makers, and Indigenous and local communities that can support future assessments of ecosystem change.

2020

DOI bib
Diversity of diatoms, benthic macroinvertebrates, and fish varies in response to different environmental correlates in Arctic rivers across North America
Jennifer Lento, Sarah M. Laske, Isabelle Lavoie, Daniel Bogan, Robert B. Brua, Stéphane Campeau, K. S. Chin, Joseph M. Culp, Brianna Levenstein, Michael Power, Émilie Saulnier‐Talbot, Rebecca Shaftel, Heidi K. Swanson, Matthew S. Whitman, Christian E. Zimmerman
Freshwater Biology, Volume 67, Issue 1

Abstract Climate change poses a significant threat to Arctic freshwater biodiversity, but impacts depend upon the strength of organism response to climate‐related drivers. Currently, there is insufficient knowledge about Arctic freshwater biodiversity patterns to guide assessment, prediction, and management of biodiversity change. As part of the Circumpolar Biodiversity Monitoring Program's first freshwater assessment, we evaluated diversity of diatoms, benthic macroinvertebrates, and fish in North American Arctic rivers. Alpha diversity was assessed in relation to temperature, water chemistry, bedrock geology, and glaciation history to identify important environmental correlates. Biotic composition was compared among groups to evaluate response to environmental gradients. Macroinvertebrate α‐diversity declined strongly with increasing latitude from 48°N to 82°N, whereas diatom and fish diversity peaked around 70°N without a clear latitudinal decline. Macroinvertebrate diversity was significantly positively related to air temperature. Diatom diversity was related to bedrock geology and temperature, whereas fish diversity was related to glaciation history. Fish and macroinvertebrate assemblages differed between sites in western Canada, where invertebrate composition was more variable, and Alaska, where fish composition was more variable. In sites with both diatom and macroinvertebrate data, diatom composition was distinct in Alaska, where richness was highest in former glacial refugia. Macroinvertebrate composition was distinct in lowest‐latitude eastern and high‐latitude western Canadian sites where temperature was highest. Temperature, precipitation, geology, calcium, and substrate size were important environmental correlates for diatoms and macroinvertebrates, although the relative importance of each correlate differed. Diatom taxa were most strongly associated with water chemistry, whereas benthic invertebrate composition related most strongly to precipitation and temperature. This large‐scale study provides the most substantial integration and analysis of river diatom, macroinvertebrate, and fish data from the North American Arctic to date. Findings suggest that macroinvertebrates will show the strongest response to climate‐related shifts in temperature, whereas diatoms and fish are more likely to respond to climate‐induced shifts in nutrients and hydraulic connectivity. However, significant gaps in data coverage limited our ability to reliably evaluate spatial patterns and detect change. These gaps could be reduced by improving collaborative efforts between the U.S.A. and Canada to harmonise future monitoring.