Jinhui Jeanne Huang‬‬‬‬


2020

DOI bib
Influence of wastewater microbial community on the performance of miniaturized microbial fuel cell biosensor
Nan Xiao, P. Ravi Selvaganapathy, Rong Wu, Jinhui Jeanne Huang‬‬‬‬
Bioresource Technology, Volume 302

Microbial fuel cells (MFCs) based sensors had been studied in measuring biochemical oxygen demand (BOD) or the equivalent chemical oxygen demand (COD) recently. Limited attention has been paid to the effect of the microbial communities in wastewater on the responses of these sensors. This study systematically evaluated, for the first time, the effect of wastewater samples from a variety of sources on the electrical response of a micro-fabricated double-chamber MFC device. It was found that the response of the MFC is positively correlated with the bacterial composition, in particular electroactive bacteria. The presence of aerobic bacteria in the sample reduces the current generation. These findings indicated that the bacterial content of the water sample could be a significant interference source and must be considered in the use of µMFC-based sensors. Filtering samples may be effective in improving the reliability of these microsensors.

DOI bib
Anode surface modification regulates biofilm community population and the performance of micro-MFC based biochemical oxygen demand sensor
Nan Xiao, Rong Wu, Jinhui Jeanne Huang‬‬‬‬, P. Ravi Selvaganapathy
Chemical Engineering Science, Volume 221

• Plasma increased hydrophilicity, encouraging bacterial growth and diversity. • CNT changed anode surface morphology, encouraging electroactive bacteria growth. • Both plasma and CNT treatment do not increase the sensitivity of the biosensor. • The conditions optimal for power generation may not be optimal for MFC sensors. The anode surface is known to play an important role in the microbial growth and in mediating electron transfer between electroactive bacteria and the electrodes in power generating microbial fuel cells (MFCs). However, the effect of the anode surface and its modification on MFC-based biosensor performance has not been studied previously. In this study, our results show that the surface modification influences certain aspect of the biosensor performance. Plasma treatment makes the carbon cloth electrode hydrophilic with contact angle of 82 ± 5° from that of 139 ± 3° without treatment which consequently increases the amount of biofilm and produces higher current generation. Carbon nanotube (CNT) treatment doesn’t increase the amount of biofilm but significantly changes its electroactive microorganism composition from 2.3% to 17.3% that improves current generation. Interestingly, the sensitivity of the MFC sensor was not improved by either of these treatments. These findings would be important for the optimized design and manufacturing of biosensing MFCs.

DOI bib
Development of a xurographically fabricated miniaturized low-cost, high-performance microbial fuel cell and its application for sensing biological oxygen demand
Nan Xiao, Rong Wu, Jinhui Jeanne Huang‬‬‬‬, P. Ravi Selvaganapathy
Sensors and Actuators B: Chemical, Volume 304

Abstract The rapid quantification of biological oxygen demand (BOD) plays an important role in environmental management, for instance, wastewater treatment. This study used xurographic fabrication technology to rapidly fabricate a low cost miniaturized microbial fuel cell (MFC) and demonstrated its suitability to measure BOD. The miniaturized sensor could be fabricated in 10 min with low cost of $0.5 U.S. per device. The reaction volume was designed to be 1.8 μL to obtain faster response time. The sensor was tested using sodium acetate (NaAc) as a model BOD analyte. It could response to a wide range of BOD concentration between 20 and 490 mg/L which would cover the majority range of wastewater BOD concentration in a wastewater treatment plant. The response time of this microsensor was 1.1 min which was significantly shorter than other conventional methods for BOD measurements (5 days). This study demonstrated that the use of xurographic methods to fabricate MFCs could enable rapid fabrication of microsensors to measure BOD in a rapid manner. This study also identified the potential of the sensor for application in wastewater treatment plants to monitor BOD and provide guidance for controlling treatment processes.