John Hanesiak


2023

DOI bib
Adhering Solid Precipitation in the Current and Pseudo-Global Warming Future Climate over the Canadian Provinces of Manitoba and Saskatchewan
Ronald E. Stewart, Zhuo Liu, Dylan Painchaud-Niemi, John Hanesiak, Julie M. Thériault
Atmosphere, Volume 14, Issue 2

Solid precipitation falling near 0 °C, mainly snow, can adhere to surface features and produce major impacts. This study is concerned with characterizing this precipitation over the Canadian Prairie provinces of Manitoba and Saskatchewan in the current (2000–2013) and pseudo-global warming future climate, with an average 5.9 °C temperature increase, through the use of high resolution (4 km) model simulations. On average, simulations in the current climate suggest that this precipitation occurs within 11 events per year, lasting 33.6 h in total and producing 27.5 mm melted equivalent, but there are wide spatial variations that are partly due to enhancements arising from its relatively low terrain. Within the warmer climate, average values generally increase, and spatial patterns shift somewhat. This precipitation consists of four categories covering its occurrence just below and just above a wet-bulb temperature of 0 °C, and with or without liquid precipitation. It generally peaks in March or April, as well as in October, and these peaks move towards mid-winter by approximately one month within the warmer climate. Storms producing this precipitation generally produce winds with a northerly component during or shortly after the precipitation; these winds contribute to further damage. Overall, this study has determined the features of and expected changes to adhering precipitation across this region.

2022

DOI bib
The Severe Multi-Day October 2019 Snow Storm Over Southern Manitoba, Canada
John Hanesiak, Ronald E. Stewart, Dylan Painchaud-Niemi, Shawn M. Milrad, George Liu, Michael Vieira, Julie M. Thériault, Mélissa Cholette, Kyle Ziolkowski
Atmosphere-Ocean, Volume 60, Issue 2

ABSTRACT A devastating storm struck southern Manitoba, Canada on 10–13 October 2019, producing a large region of mainly sticky and wet snow. Accumulations reached 75 cm, wind gusts exceeded 100 km h−1, and surface temperature (T) remained near 0°C (−1°C ≤ T ≤ 1°C) for up to 88 h. It produced the largest October snowfall and was the earliest to produce at least 20 cm since 1872 in Winnipeg. These factors led to unparalleled damage and power restoration challenges for Manitoba Hydro and, with leaves still largely on vegetation, the most damaging storm to Winnipeg’s trees ever recorded. The storm’s track was uncommon, and produced elevated convection related to buoyancy-driven instability and conditional symmetric instability (CSI), with a moist absolutely unstable layer (MAUL) near 500 hPa. Instabilities were released via lift through lower-tropospheric warm advection and frontogenesis, differential cyclonic vorticity advection, and jet streak dynamics. Precipitation bands, elevated convection, and lake effect snow bands enhanced local snowfall. Snow adhering to structures was not always wet but, when present, it sometimes occurred because of incomplete freezing of particles partially melted aloft in a near-surface (<100 m deep) inversion. Although other storms over the historical record have produced a similar combination of severe precipitation, temperature and wind conditions, none have done this for such a long period.

2019

DOI bib
A Review and Synthesis of Future Earth System Change in theInterior of Western Canada: Part I – Climate and Meteorology
Ronald E. Stewart, Kit K. Szeto, Barrie Bonsal, John Hanesiak, Bohdan Kochtubajda, Yanping Li, Julie M. Thériault, C. M. DeBeer, Benita Y. Tam, Zhenhua Li, Lu Zhuo, Jennifer Bruneau, Sébastien Marinier, Dominic Matte

Abstract. The Interior of Western Canada, up to and including the Arctic, has experienced rapid change in its climate, hydrology, cryosphere and ecosystems and this is expected to continue. Although there is general consensus that warming will occur in the future, many critical issues remain. In this first of two articles, attention is placed on atmospheric-related issues that range from large scales down to individual precipitation events. Each of these is considered in terms of expected change organized by season and utilizing climate scenario information as well as thermodynamically-driven future climatic forcing simulations. Large scale atmospheric circulations affecting this region are generally projected to become stronger in each season and, coupled with warming temperatures, lead to enhancements of numerous water-related and temperature-related extremes. These include winter snowstorms, freezing rain, drought as well as atmospheric forcing of spring floods although not necessarily summer convection. Collective insights of these atmospheric findings are summarized in a consistent, connected physical framework.

DOI bib
Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 1: Projected climate and meteorology
Ronald E. Stewart, Kit K. Szeto, Barrie Bonsal, John Hanesiak, Bohdan Kochtubajda, Yanping Li, Julie M. Thériault, C. M. DeBeer, Benita Y. Tam, Zhenhua Li, Zhuo Liu, Jennifer Bruneau, Patrick Duplessis, Sébastien Marinier, Dominic Matte
Hydrology and Earth System Sciences, Volume 23, Issue 8

Abstract. The interior of western Canada, up to and including the Arctic, has experienced rapid change in its climate, hydrology, cryosphere, and ecosystems, and this is expected to continue. Although there is general consensus that warming will occur in the future, many critical issues remain. In this first of two articles, attention is placed on atmospheric-related issues that range from large scales down to individual precipitation events. Each of these is considered in terms of expected change organized by season and utilizing mainly “business-as-usual” climate scenario information. Large-scale atmospheric circulations affecting this region are projected to shift differently in each season, with conditions that are conducive to the development of hydroclimate extremes in the domain becoming substantially more intense and frequent after the mid-century. When coupled with warming temperatures, changes in the large-scale atmospheric drivers lead to enhancements of numerous water-related and temperature-related extremes. These include winter snowstorms, freezing rain, drought, forest fires, as well as atmospheric forcing of spring floods, although not necessarily summer convection. Collective insights of these atmospheric findings are summarized in a consistent, connected physical framework.

2017

DOI bib
The changing hail threat over North America in response to anthropogenic climate change
Julian C. Brimelow, William R. Burrows, John Hanesiak
Nature Climate Change, Volume 7, Issue 7

Anthropogenic climate change is anticipated to increase severe thunderstorm potential in North America, but the resulting changes in associated convective hazards are not well known. Here, using a novel modelling approach, we investigate the spatiotemporal changes in hail frequency and size between the present (1971–2000) and future (2041–2070). Although fewer hail days are expected over most areas in the future, an increase in the mean hail size is projected, with fewer small hail events and a shift toward a more frequent occurrence of larger hail. This leads to an anticipated increase in hail damage potential over most southern regions in spring, retreating to the higher latitudes (that is, north of 50° N) and the Rocky Mountains in the summer. In contrast, a dramatic decrease in hail frequency and damage potential is predicted over eastern and southeastern regions in spring and summer due to a significant increase in melting that mitigates gains in hail size from increased buoyancy.