Koen Hufkens


2023

DOI bib
Pan‐Arctic soil moisture control on tundra carbon sequestration and plant productivity
Donatella Zona, Peter M. Lafleur, Koen Hufkens, Beniamino Gioli, Barbara Bailey, George Burba, Eugénie Euskirchen, Jennifer D. Watts, Kyle A. Arndt, Mary Farina, J. S. Kimball, Martin Heimann, Mathias Goeckede, Martijn Pallandt, Torben R. Christensen, Mikhail Mastepanov, Efrén López‐Blanco, A.J. Dolman, R. Commane, Charles E. Miller, Josh Hashemi, Lars Kutzbach, David Holl, Julia Boike, Christian Wille, Torsten Sachs, Aram Kalhori, Elyn Humphreys, Oliver Sonnentag, Gesa Meyer, Gabriel Gosselin, Philip Marsh, Walter C. Oechel
Global Change Biology, Volume 29, Issue 5

Long-term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high-latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long-term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site-years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer.

2022

DOI bib
Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems
Donatella Zona, Peter M. Lafleur, Koen Hufkens, Barbara Bailey, Beniamino Gioli, George Burba, Jordan P. Goodrich, A. K. Liljedahl, Eugénie Euskirchen, Jennifer D. Watts, Mary Farina, J. S. Kimball, Martin Heimann, Mathias Göckede, Martijn Pallandt, Torben R. Christensen, Mikhail Mastepanov, Efrén López‐Blanco, Marcin Jackowicz-Korczyński, A. J. Dolman, Luca Belelli Marchesini, R. Commane, Steven C. Wofsy, Charles E. Miller, David A. Lipson, Josh Hashemi, Kyle A. Arndt, Lars Kutzbach, David Holl, Julia Boike, Christian Wille, Torsten Sachs, Aram Kalhori, Xingyu Song, Xiaofeng Xu, Elyn Humphreys, C. Koven, Oliver Sonnentag, Gesa Meyer, Gabriel Gosselin, Philip Marsh, Walter C. Oechel
Scientific Reports, Volume 12, Issue 1

Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO2 later in the season.

2020

DOI bib
Seasonal variation in the canopy color of temperate evergreen conifer forests
Bijan Seyednasrollah, David R. Bowling, Rui Cheng, Barry A. Logan, Troy S. Magney, Christian Frankenberg, Julia C. Yang, Adam M. Young, Koen Hufkens, M. Altaf Arain, T. Andrew Black, Peter D. Blanken, Rosvel Bracho, Rachhpal S. Jassal, David Y. Hollinger, Beverly E. Law, Zoran Nesic, Andrew D. Richardson
New Phytologist, Volume 229, Issue 5

Evergreen conifer forests are the most prevalent land cover type in North America. Seasonal changes in the color of evergreen forest canopies have been documented with near-surface remote sensing, but the physiological mechanisms underlying these changes, and the implications for photosynthetic uptake, have not been fully elucidated. Here, we integrate on-the-ground phenological observations, leaf-level physiological measurements, near surface hyperspectral remote sensing and digital camera imagery, tower-based CO2 flux measurements, and a predictive model to simulate seasonal canopy color dynamics. We show that seasonal changes in canopy color occur independently of new leaf production, but track changes in chlorophyll fluorescence, the photochemical reflectance index, and leaf pigmentation. We demonstrate that at winter-dormant sites, seasonal changes in canopy color can be used to predict the onset of canopy-level photosynthesis in spring, and its cessation in autumn. Finally, we parameterize a simple temperature-based model to predict the seasonal cycle of canopy greenness, and we show that the model successfully simulates interannual variation in the timing of changes in canopy color. These results provide mechanistic insight into the factors driving seasonal changes in evergreen canopy color and provide opportunities to monitor and model seasonal variation in photosynthetic activity using color-based vegetation indices.

2018

DOI bib
Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe’s terrestrial ecosystems: a review
Daniela Franz, Manuel Acosta, Núria Altimir, Nicola Arriga, Dominique Arrouays, Marc Aubinet, Mika Aurela, Edward Ayres, Ana López‐Ballesteros, Mireille Barbaste, Daniel Berveiller, S. Biraud, Hakima Boukir, Thomas S. Brown, Christian Brümmer, Nina Buchmann, George Burba, Arnaud Carrara, A. Cescatti, Éric Ceschia, Robert Clement, Edoardo Cremonese, Patrick Crill, Eva Dařenová, Sigrid Dengel, Petra D’Odorico, Gianluca Filippa, Stefan Fleck, Gerardo Fratini, Roland Fuß, Bert Gielen, Sébastien Gogo, J. Grace, Alexander Graf, Achim Grelle, Patrick Gross, Thomas Grünwald, Sami Haapanala, Markus Hehn, Bernard Heinesch, Jouni Heiskanen, Mathias Herbst, Christine Herschlein, Lukas Hörtnagl, Koen Hufkens, Andreas Ibrom, Claudy Jolivet, Lilian Joly, Michael B. Jones, Ralf Kiese, Leif Klemedtsson, Natascha Kljun, Katja Klumpp, Pasi Kolari, Olaf Kolle, Andrew S. Kowalski, Werner L. Kutsch, Tuomas Laurila, Anne De Ligne, Sune Linder, Anders Lindroth, Annalea Lohila, Bernhard Longdoz, Ivan Mammarella, Tanguy Manise, Sara Marañón-Jiménez, Giorgio Matteucci, Matthias Mauder, Philip Meier, Lutz Merbold, Simone Mereu, Stefan Metzger, Mirco Migliavacca, Meelis Mölder, Leonardo Montagnani, Christine Moureaux, David D. Nelson, Eiko Nemitz, Giacomo Nicolini, Mats Nilsson, Maarten Op de Beeck, Bruce Osborne, Mikaell Ottosson Löfvenius, Marián Pavelka, Matthias Peichl, Olli Peltola, Mari Pihlatie, Andrea Pitacco, Radek Pokorný, Jukka Pumpanen, Céline Ratié, Corinna Rebmann, Marilyn Roland, Simone Sabbatini, Nicolas Saby, Matthew Saunders, Hans Peter Schmid, Marion Schrumpf, Pavel Sedlák, Penélope Serrano-Ortiz, Lukas Siebicke, Ladislav Šigut, Hanna Silvennoinen, Guillaume Simioni, U. Skiba, Oliver Sonnentag, Kamel Soudani, Patrice Soulé, R. Steinbrecher, Tiphaine Tallec, Anne Thimonier, Eeva‐Stiina Tuittila, Juha‐Pekka Tuovinen, Patrik Vestin, Gaëlle Vincent, Caroline Vincke, Domenico Vitale, Peter Waldner, Per Weslien, Lisa Wingate, Georg Wohlfahrt, M. S. Zahniser, Timo Vesala
International Agrophysics, Volume 32, Issue 4

Abstract Research infrastructures play a key role in launching a new generation of integrated long-term, geographically distributed observation programmes designed to monitor climate change, better understand its impacts on global ecosystems, and evaluate possible mitigation and adaptation strategies. The pan-European Integrated Carbon Observation System combines carbon and greenhouse gas (GHG; CO 2 , CH 4 , N 2 O, H 2 O) observations within the atmosphere, terrestrial ecosystems and oceans. High-precision measurements are obtained using standardised methodologies, are centrally processed and openly available in a traceable and verifiable fashion in combination with detailed metadata. The Integrated Carbon Observation System ecosystem station network aims to sample climate and land-cover variability across Europe. In addition to GHG flux measurements, a large set of complementary data (including management practices, vegetation and soil characteristics) is collected to support the interpretation, spatial upscaling and modelling of observed ecosystem carbon and GHG dynamics. The applied sampling design was developed and formulated in protocols by the scientific community, representing a trade-off between an ideal dataset and practical feasibility. The use of open-access, high-quality and multi-level data products by different user communities is crucial for the Integrated Carbon Observation System in order to achieve its scientific potential and societal value.
Search
Co-authors
Venues