2022
DOI
bib
abs
Review of GPM IMERG performance: A global perspective
Rajani Kumar Pradhan,
Yannis Markonis,
Mijael Rodrigo Vargas Godoy,
Anahí Villalba-Pradas,
Konstantinos M. Andreadis,
Efthymios I. Nikolopoulos,
S. Papalexiou,
Akif Rahim,
Francisco J. Tapiador,
Martin Hanel
Remote Sensing of Environment, Volume 268
• A comprehensive review and analysis of IMERG validation studies from 2016 to 2019. • There is robust representation of spatio-temporal patterns of precipitation. • Discrepancies can be found in extreme and light precipitation, and the winter season. • The 30-min scale has not yet been sufficiently evaluated. • Using IMERG in hydrological simulation results to high variance in their performance. Accurate, reliable, and high spatio-temporal resolution precipitation data are vital for many applications, including the study of extreme events, hydrological modeling, water resource management, and hydroclimatic research in general. In this study, we performed a systematic review of the available literature to assess the performance of the Integrated Multi-Satellite Retrievals for GPM (IMERG) products across different geographical locations and climatic conditions around the globe. Asia, and in particular China, are the subject of the largest number of IMERG evaluation studies on the continental and country level. When compared to ground observational records, IMERG is found to vary with seasons, as well as precipitation type, structure, and intensity. It is shown to appropriately estimate and detect regional precipitation patterns, and their spatial mean, while its performance can be improved over mountainous regions characterized by orographic precipitation, complex terrains, and for winter precipitation. Furthermore, despite IMERG's better performance compared to other satellite products in reproducing spatio-temporal patterns and variability of extreme precipitation, some limitations were found regarding the precipitation intensity. At the temporal scales, IMERG performs better at monthly and annual time steps than the daily and sub-daily ones. Finally, in terms of hydrological application, the use of IMERG has resulted in significant discrepancies in streamflow simulation. However, and most importantly, we find that each new version that replaces the previous one, shows substantial improvement in almost every spatiotemporal scale and climatic condition. Thus, despite its limitations, IMERG evolution reveals a promising path for current and future applications.
2021
As droughts have widespread social and ecological impacts, it is critical to develop long-term adaptation and mitigation strategies to reduce drought vulnerability. Climate models are important in quantifying drought changes. Here, we assess the ability of 285 CMIP6 historical simulations, from 17 models, to reproduce drought duration and severity in three observational data sets using the Standardized Precipitation Index (SPI). We used summary statistics beyond the mean and standard deviation, and devised a novel probabilistic framework, based on the Hellinger distance, to quantify the difference between observed and simulated drought characteristics. Results show that many simulations have less than ±10% error in reproducing the observed drought summary statistics. The hypothesis that simulations and observations are described by the same distribution cannot be rejected for more than 80% of the grids based on our H distance framework. No single model stood out as demonstrating consistently better performance over large regions of the globe. The variance in drought statistics among the simulations is higher in the tropics compared to other latitudinal zones. Though the models capture the characteristics of dry spells well, there is considerable bias in low precipitation values. Good model performance in terms of SPI does not imply good performance in simulating low precipitation. Our study emphasizes the need to probabilistically evaluate climate model simulations in order to both pinpoint model weaknesses and identify a subset of best-performing models that are useful for impact assessments.
2020
DOI
bib
abs
Underlying Fundamentals of Kalman Filtering for River Network Modeling
C. M. Emery,
Cédric H. David,
Konstantinos M. Andreadis,
M. Turmon,
J. T. Reager,
Jonathan Hobbs,
Ming Pan,
J. S. Famiglietti,
R. Edward Beighley,
Matthew Rodell
Journal of Hydrometeorology, Volume 21, Issue 3
Abstract The grand challenge of producing hydrometeorological estimates every time and everywhere has motivated the fusion of sparse observations with dense numerical models, with a particular interest on discharge in river modeling. Ensemble methods are largely preferred as they enable the estimation of error properties, but at the expense of computational load and generally with underestimations. These imperfect stochastic estimates motivate the use of correction methods, that is, error localization and inflation, although the physical justifications for their optimality are limited. The purpose of this study is to use one of the simplest forms of data assimilation when applied to river modeling and reveal the underlying mechanisms impacting its performance. Our framework based on assimilating daily averaged in situ discharge measurements to correct daily averaged runoff was tested over a 4-yr case study of two rivers in Texas. Results show that under optimal conditions of inflation and localization, discharge simulations are consistently improved such that the mean values of Nash–Sutcliffe efficiency are enhanced from −11.32 to 0.55 at observed gauges and from −12.24 to −1.10 at validation gauges. Yet, parameters controlling the inflation and the localization have a large impact on the performance. Further investigations of these sensitivities showed that optimal inflation occurs when compensating exactly for discrepancies in the magnitude of errors while optimal localization matches the distance traveled during one assimilation window. These results may be applicable to more advanced data assimilation methods as well as for larger applications motivated by upcoming river-observing satellite missions, such as NASA’s Surface Water and Ocean Topography mission.
2019
DOI
bib
abs
A High-Resolution Data Assimilation Framework for Snow Water Equivalent Estimation across the Western United States and Validation with the Airborne Snow Observatory
C. M. Oaida,
J. T. Reager,
Konstantinos M. Andreadis,
Cédric H. David,
S. Levoe,
T. H. Painter,
K. J. Bormann,
A. Trangsrud,
Manuela Girotto,
J. S. Famiglietti
Journal of Hydrometeorology, Volume 20, Issue 3
Abstract Numerical simulations of snow water equivalent (SWE) in mountain systems can be biased, and few SWE observations have existed over large domains. New approaches for measuring SWE, like NASA’s ultra-high-resolution Airborne Snow Observatory (ASO), offer an opportunity to improve model estimates by providing a high-quality validation target. In this study, a computationally efficient snow data assimilation (DA) approach over the western United States at 1.75-km spatial resolution for water years (WYs) 2001–17 is presented. A local ensemble transform Kalman filter implemented as a batch smoother is used with the VIC hydrology model to assimilate the remotely sensed daily MODIS fractional snow-covered area (SCA). Validation of the high-resolution SWE estimates is done against ASO SWE data in the Tuolumne basin (California), Uncompahgre basin (Colorado), and Olympic Peninsula (Washington). Results indicate good performance in dry years and during melt, with DA reducing Tuolumne basin-average SWE percent differences from −68%, −92%, and −84% in open loop to 0.6%, 25%, and 3% after DA for WYs 2013–15, respectively, for ASO dates and spatial extent. DA also improved SWE percent difference over the Uncompahgre basin (−84% open loop, −65% DA) and Olympic Peninsula (26% open loop, −0.2% DA). However, in anomalously wet years DA underestimates SWE, likely due to an inadequate snow depletion curve parameterization. Despite potential shortcomings due to VIC model setup (e.g., water balance mode) or parameterization (snow depletion curve), the DA framework implemented in this study shows promise in overcoming some of these limitations and improving estimated SWE, in particular during drier years or at higher elevations, when most in situ observations cannot capture high-elevation snowpack due to lack of stations there.
DOI
bib
abs
Model-data fusion of hydrologic simulations and GRACE terrestrial water storage observations to estimate changes in water table depth
D. Stampoulis,
J. T. Reager,
Cédric H. David,
Konstantinos M. Andreadis,
J. S. Famiglietti,
Tom G. Farr,
A. Trangsrud,
Ralph R. Basilio,
John L. Sabo,
G. B. Osterman,
P. Lundgren,
Zhen Liu
Advances in Water Resources, Volume 128
Abstract Despite numerous advances in continental-scale hydrologic modeling and improvements in global Land Surface Models, an accurate representation of regional water table depth (WTD) remains a challenge. Data assimilation of observations from the Gravity Recovery and Climate Experiment (GRACE) mission leads to improvements in the accuracy of hydrologic models, ultimately resulting in more reliable estimates of lumped water storage. However, the usually shallow groundwater compartment of many models presents a problem with GRACE assimilation techniques, as these satellite observations also represent changes in deeper soils and aquifers. To improve the accuracy of modeled groundwater estimates and allow the representation of WTD at finer spatial scales, we implemented a simple, yet novel approach to integrate GRACE data, by augmenting the Variable Infiltration Capacity (VIC) hydrologic model. First, the subsurface model structural representation was modified by incorporating an additional (fourth) soil layer of varying depth (up to 1000 m) in VIC as the bottom ‘groundwater’ layer. This addition allows the model to reproduce water storage variability not only in shallow soils but also in deeper groundwater, in order to allow integration of the full GRACE-observed variability. Second, a Direct Insertion scheme was developed that integrates the high temporal (daily) and spatial (∼6.94 km) resolution model outputs to match the GRACE resolution, performs the integration, and then disaggregates the updated model state after the assimilation step. Simulations were performed with and without Direct Insertion over the three largest river basins in California and including the Central Valley, in order to test the augmented model's ability to capture seasonal and inter-annual trends in the water table. This is the first-ever fusion of GRACE total water storage change observations with hydrologic simulations aiming at the determination of water table depth dynamics, at spatial scales potentially useful for local water management.
2018
Earth‐orbiting satellites provide valuable observations of upstream river conditions worldwide. These observations can be used in real‐time applications like early flood warning systems and reservoir operations, provided they are made available to users with sufficient lead time. Yet the temporal requirements for access to satellite‐based river data remain uncharacterized for time‐sensitive applications. Here we present a global approximation of flow wave travel time to assess the utility of existing and future low‐latency/near‐real‐time satellite products, with an emphasis on the forthcoming SWOT satellite mission. We apply a kinematic wave model to a global hydrography data set and find that global flow waves traveling at their maximum speed take a median travel time of 6, 4, and 3 days to reach their basin terminus, the next downstream city, and the next downstream dam, respectively. Our findings suggest that a recently proposed ≤2‐day data latency for a low‐latency SWOT product is potentially useful for real‐time river applications.