Lisa V. Alexander
2021
A Global, Continental, and Regional Analysis of Changes in Extreme Precipitation
Qing Sun,
Xuebin Zhang,
Francis W. Zwiers,
Seth Westra,
Lisa V. Alexander
Journal of Climate, Volume 34, Issue 1
Abstract This paper provides an updated analysis of observed changes in extreme precipitation using high-quality station data up to 2018. We examine changes in extreme precipitation represented by annual maxima of 1-day (Rx1day) and 5-day (Rx5day) precipitation accumulations at different spatial scales and attempt to address whether the signal in extreme precipitation has strengthened with several years of additional observations. Extreme precipitation has increased at about two-thirds of stations and the percentage of stations with significantly increasing trends is significantly larger than that can be expected by chance for the globe, continents including Asia, Europe, and North America, and regions including central North America, eastern North America, northern Central America, northern Europe, the Russian Far East, eastern central Asia, and East Asia. The percentage of stations with significantly decreasing trends is not different from that expected by chance. Fitting extreme precipitation to generalized extreme value distributions with global mean surface temperature (GMST) as a covariate reaffirms the statistically significant connections between extreme precipitation and temperature. The global median sensitivity, percentage change in extreme precipitation per 1 K increase in GMST is 6.6% (5.1% to 8.2%; 5%–95% confidence interval) for Rx1day and is slightly smaller at 5.7% (5.0% to 8.0%) for Rx5day. The comparison of results based on observations ending in 2018 with those from data ending in 2000–09 shows a consistent median rate of increase, but a larger percentage of stations with statistically significant increasing trends, indicating an increase in the detectability of extreme precipitation intensification, likely due to the use of longer records.
2017
Understanding, modeling and predicting weather and climate extremes: Challenges and opportunities
Jana Sillmann,
Thordis L. Thorarinsdottir,
Noel Keenlyside,
Nathalie Schaller,
Lisa V. Alexander,
Gabriele C. Hegerl,
Sonia I. Seneviratne,
Robert Vautard,
Xuebin Zhang,
Francis W. Zwiers
Weather and Climate Extremes, Volume 18
Weather and climate extremes are identified as major areas necessitating further progress in climate research and have thus been selected as one of the World Climate Research Programme (WCRP) Grand Challenges. Here, we provide an overview of current challenges and opportunities for scientific progress and cross-community collaboration on the topic of understanding, modeling and predicting extreme events based on an expert workshop organized as part of the implementation of the WCRP Grand Challenge on Weather and Climate Extremes. In general, the development of an extreme event depends on a favorable initial state, the presence of large-scale drivers, and positive local feedbacks, as well as stochastic processes. We, therefore, elaborate on the scientific challenges related to large-scale drivers and local-to-regional feedback processes leading to extreme events. A better understanding of the drivers and processes will improve the prediction of extremes and will support process-based evaluation of the representation of weather and climate extremes in climate model simulations. Further, we discuss how to address these challenges by focusing on short-duration (less than three days) and long-duration (weeks to months) extreme events, their underlying mechanisms and approaches for their evaluation and prediction.
Search
Co-authors
- Xuebin Zhang 2
- Francis W. Zwiers 2
- Jana Sillmann 1
- Thordis L. Thorarinsdottir 1
- Noel Keenlyside 1
- show all...
Venues
- GWF2