M. B. Masud


2016

DOI bib
Future changes to drought characteristics over the Canadian Prairie Provinces based on NARCCAP multi-RCM ensemble
M. B. Masud, M. N. Khaliq, H. S. Wheater
Climate Dynamics, Volume 48, Issue 7-8

This study assesses projected changes to drought characteristics in Alberta, Saskatchewan and Manitoba, the prairie provinces of Canada, using a multi-regional climate model (RCM) ensemble available through the North American Regional Climate Change Assessment Program. Simulations considered include those performed with six RCMs driven by National Center for Environmental Prediction reanalysis II for the 1981–2003 period and those driven by four Atmosphere–Ocean General Circulation Models for the 1970–1999 and 2041–2070 periods (i.e. eleven current and the same number of corresponding future period simulations). Drought characteristics are extracted using two drought indices, namely the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI). Regional frequency analysis is used to project changes to selected 20- and 50-year regional return levels of drought characteristics for fifteen homogeneous regions, covering the study area. In addition, multivariate analyses of drought characteristics, derived on the basis of 6-month SPI and SPEI values, are developed using the copula approach for each region. Analysis of multi-RCM ensemble-averaged projected changes to mean and selected return levels of drought characteristics show increases over the southern and south-western parts of the study area. Based on bi- and trivariate joint occurrence probabilities of drought characteristics, the southern regions along with the central regions are found highly drought vulnerable, followed by the southwestern and southeastern regions. Compared to the SPI-based analysis, the results based on SPEI suggest drier conditions over many regions in the future, indicating potential effects of rising temperatures on drought risks. These projections will be useful in the development of appropriate adaptation strategies for the water and agricultural sectors, which play an important role in the economy of the study area.

DOI bib
Projected changes to short- and long-duration precipitation extremes over the Canadian Prairie Provinces
M. B. Masud, M. N. Khaliq, H. S. Wheater
Climate Dynamics, Volume 49, Issue 5-6

The effects of climate change on April–October short- and long-duration precipitation extremes over the Canadian Prairie Provinces were evaluated using a multi-Regional Climate Model (RCM) ensemble available through the North American Regional Climate Change Assessment Program. Simulations considered include those performed with six RCMs driven by the National Centre for Environmental Prediction (NCEP) reanalysis II product for the 1981–2000 period and those driven by four Atmosphere–Ocean General Circulation Models (AOGCMs) for the current 1971–2000 and future 2041–2070 periods (i.e. a total of 11 current-to-future period simulation pairs). A regional frequency analysis approach was used to develop 2-, 5-, 10-, 25-, and 50-year return values of precipitation extremes from NCEP and AOGCM-driven current and future period simulations that respectively were used to study the performance of RCMs and projected changes for selected return values at regional, grid-cell and local scales. Performance errors due to internal dynamics and physics of RCMs studied for the 1981–2000 period reveal considerable variation in the performance of the RCMs. However, the performance errors were found to be much smaller for RCM ensemble averages than for individual RCMs. Projected changes in future climate to selected regional return values of short-duration (e.g. 15- and 30-min) precipitation extremes and for longer return periods (e.g. 50-year) were found to be mostly larger than those to the longer duration (e.g. 24- and 48-h) extremes and short return periods (e.g. 2-year). Overall, projected changes in precipitation extremes were larger for southeastern regions followed by southern and northern regions and smaller for southwestern and western regions of the study area. The changes to return values were also found to be statistically significant for the majority of the RCM–AOGCM simulation pairs. These projections might be useful as a key input for the future planning of urban drainage infrastructure and development of strategic climate change adaptation measures.