Maik Renner


2023

DOI bib
Assessing and Mitigating Ice-Jam Flood Hazards and Risks: A European Perspective
Karl‐Erich Lindenschmidt, Knut Alfredsen, Dirk Carstensen, Adam Choryński, David Gustafsson, Michał Halicki, Bernd Hentschel, Niina Karjalainen, Michael Kögel, Tomasz Kolerski, Marika Kornaś-Dynia, Michał Kubicki, Zbigniew W. Kundzewicz, Cornelia Lauschke, Albert Malinger, Włodzimierz Marszelewski, Fabian Möldner, Barbro Näslund-Landenmark, Tomasz Niedzielski, Antti Parjanne, Bogusław Pawłowski, Iwona Pińskwar, Joanna Remisz, Maik Renner, Michael Roers, Maksymilian Rybacki, Ewelina Szałkiewicz, Michał Szydłowski, Grzegorz Walusiak, Matylda Witek, Mateusz Zagata, Maciej Zdralewicz
Water, Volume 15, Issue 1

The assessment and mapping of riverine flood hazards and risks is recognized by many countries as an important tool for characterizing floods and developing flood management plans. Often, however, these management plans give attention primarily to open-water floods, with ice-jam floods being mostly an afterthought once these plans have been drafted. In some Nordic regions, ice-jam floods can be more severe than open-water floods, with floodwater levels of ice-jam floods often exceeding levels of open-water floods for the same return periods. Hence, it is imperative that flooding due to river ice processes be considered in flood management plans. This also pertains to European member states who are required to submit renewed flood management plans every six years to the European governance authorities. On 19 and 20 October 2022, a workshop entitled “Assessing and mitigating ice-jam flood hazard and risk” was hosted in Poznań, Poland to explore the necessity of incorporating ice-jam flood hazard and risk assessments in the European Union’s Flood Directive. The presentations given at the workshop provided a good overview of flood risk assessments in Europe and how they may change due to the climate in the future. Perspectives from Norway, Sweden, Finland, Germany, and Poland were presented. Mitigation measures, particularly the artificial breakage of river ice covers and ice-jam flood forecasting, were shared. Advances in ice processes were also presented at the workshop, including state-of-the-art developments in tracking ice-floe velocities using particle tracking velocimetry, characterizing hanging dam ice, designing new ice-control structures, detecting, and monitoring river ice covers using composite imagery from both radar and optical satellite sensors, and calculating ice-jam flood hazards using a stochastic modelling approach.

2021

DOI bib
How Well Can Land-Surface Models Represent the Diurnal Cycle of Turbulent Heat Fluxes?
Maik Renner, Axel Kleidon, Martyn P. Clark, Bart Nijssen, Marvin Heidkamp, Martin Best, Gab Abramowitz
Journal of Hydrometeorology, Volume 22, Issue 1

Abstract The diurnal cycle of solar radiation represents the strongest energetic forcing and dominates the exchange of heat and mass of the land surface with the atmosphere. This diurnal heat redistribution represents a core of land–atmosphere coupling that should be accurately represented in land surface models (LSMs), which are critical parts of weather and climate models. We employ a diagnostic model evaluation approach using a signature-based metric that describes the diurnal variation of heat fluxes. The metric is obtained by decomposing the diurnal variation of surface heat fluxes into their direct response and the phase lag to incoming solar radiation. We employ the output of 13 different LSMs driven with meteorological forcing of 20 FLUXNET sites (PLUMBER dataset). All LSMs show a poor representation of the evaporative fraction and thus the diurnal magnitude of the sensible and latent heat flux under cloud-free conditions. In addition, we find that the diurnal phase of both heat fluxes is poorly represented. The best performing model only reproduces 33% of the evaluated evaporative conditions across the sites. The poor performance of the diurnal cycle of turbulent heat exchange appears to be linked to how models solve for the surface energy balance and redistribute heat into the subsurface. We conclude that a systematic evaluation of diurnal signatures is likely to help to improve the simulated diurnal cycle, better represent land–atmosphere interactions, and therefore improve simulations of the near-surface climate.

2019

DOI bib
Twenty-three unsolved problems in hydrology (UPH) – a community perspective
Günter Blöschl, M. F. Bierkens, António Chambel, Christophe Cudennec, Georgia Destouni, Aldo Fiori, J. W. Kirchner, Jeffrey J. McDonnell, H. H. G. Savenije, Murugesu Sivapalan, Christine Stumpp, Elena Toth, Elena Volpi, Gemma Carr, Claire Lupton, José Luis Salinas, Borbála Széles, Alberto Viglione, Hafzullah Aksoy, Scott T. Allen, Anam Amin, Vazken Andréassian, Berit Arheimer, Santosh Aryal, Victor R. Baker, Earl Bardsley, Marlies Barendrecht, Alena Bartošová, Okke Batelaan, Wouter Berghuijs, Keith Beven, Theresa Blume, Thom Bogaard, Pablo Borges de Amorim, Michael E. Böttcher, Gilles Boulet, Korbinian Breinl, Mitja Brilly, Luca Brocca, Wouter Buytaert, Attilio Castellarin, Andrea Castelletti, Xiaohong Chen, Yangbo Chen, Yuanfang Chen, Peter Chifflard, Pierluigi Claps, Martyn P. Clark, Adrian L. Collins, Barry Croke, Annette Dathe, Paula Cunha David, Felipe P. J. de Barros, Gerrit de Rooij, Giuliano Di Baldassarre, Jessica M. Driscoll, Doris Duethmann, Ravindra Dwivedi, Ebru Eriş, William Farmer, James Feiccabrino, Grant Ferguson, Ennio Ferrari, Stefano Ferraris, Benjamin Fersch, David C. Finger, Laura Foglia, Keirnan Fowler, Б. И. Гарцман, Simon Gascoin, Éric Gaumé, Alexander Gelfan, Josie Geris, Shervan Gharari, Tom Gleeson, Miriam Glendell, Alena Gonzalez Bevacqua, M. P. González‐Dugo, Salvatore Grimaldi, A.B. Gupta, Björn Guse, Dawei Han, David M. Hannah, A. A. Harpold, Stefan Haun, Kate Heal, Kay Helfricht, Mathew Herrnegger, Matthew R. Hipsey, Hana Hlaváčiková, Clara Hohmann, Ladislav Holko, C. Hopkinson, Markus Hrachowitz, Tissa H. Illangasekare, Azhar Inam, Camyla Innocente, Erkan Istanbulluoglu, Ben Jarihani, Zahra Kalantari, Andis Kalvāns, Sonu Khanal, Sina Khatami, Jens Kiesel, M. J. Kirkby, Wouter Knoben, Krzysztof Kochanek, Silvia Kohnová, Alla Kolechkina, Stefan Krause, David K. Kreamer, Heidi Kreibich, Harald Kunstmann, Holger Lange, Margarida L. R. Liberato, Eric Lindquist, Timothy E. Link, Junguo Liu, Daniel P. Loucks, Charles H. Luce, Gil Mahé, Olga Makarieva, Julien Malard, Shamshagul Mashtayeva, Shreedhar Maskey, Josep Mas-Plá, Maria Mavrova-Guirguinova, Maurizio Mazzoleni, Sebastian H. Mernild, Bruce Misstear, Alberto Montanari, Hannes Müller-Thomy, Alireza Nabizadeh, Fernando Nardi, Christopher M. U. Neale, Nataliia Nesterova, Bakhram Nurtaev, V.O. Odongo, Subhabrata Panda, Saket Pande, Zhonghe Pang, Georgia Papacharalampous, Charles Perrin, Laurent Pfister, Rafael Pimentel, María José Polo, David Post, Cristina Prieto, Maria‐Helena Ramos, Maik Renner, José Eduardo Reynolds, Elena Ridolfi, Riccardo Rigon, Mònica Riva, David E. Robertson, Renzo Rosso, Tirthankar Roy, João Henrique Macedo Sá, Gianfausto Salvadori, Melody Sandells, Bettina Schaefli, Andreas Schumann, Anna Scolobig, Jan Seibert, Éric Servat, Mojtaba Shafiei, Ashish Sharma, Moussa Sidibé, Roy C. Sidle, Thomas Skaugen, Hugh G. Smith, Sabine M. Spiessl, Lina Stein, Ingelin Steinsland, Ulrich Strasser, Bob Su, Ján Szolgay, David G. Tarboton, Flavia Tauro, Guillaume Thirel, Fuqiang Tian, Rui Tong, Kamshat Tussupova, Hristos Tyralis, R. Uijlenhoet, Rens van Beek, Ruud J. van der Ent, Martine van der Ploeg, Anne F. Van Loon, Ilja van Meerveld, Ronald van Nooijen, Pieter van Oel, Jean‐Philippe Vidal, Jana von Freyberg, Sergiy Vorogushyn, Przemysław Wachniew, Andrew J. Wade, Philip J. Ward, Ida Westerberg, Christopher White, Eric F. Wood, Ross Woods, Zongxue Xu, Koray K. Yılmaz, Yongqiang Zhang
Hydrological Sciences Journal, Volume 64, Issue 10

This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through online media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focused on the process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come.
Search
Co-authors
Venues