Mathias Göckede


2023

DOI bib
Modeled production, oxidation, and transport processes of wetland methane emissions in temperate, boreal, and Arctic regions
Masahito Ueyama, Sara Knox, Kyle Delwiche, Sheel Bansal, William J. Riley, Dennis Baldocchi, Takashi Hirano, Gavin McNicol, K. V. Schäfer, Lisamarie Windham‐Myers, Benjamin Poulter, Robert B. Jackson, Kuang‐Yu Chang, Jiquen Chen, Housen Chu, Ankur R. Desai, Sébastien Gogo, Hiroyasu Iwata, Minseok Kang, Ivan Mammarella, Matthias Peichl, Oliver Sonnentag, Eeva‐Stiina Tuittila, Youngryel Ryu, Eugénie Euskirchen, Mathias Göckede, Adrien Jacotot, Mats Nilsson, Torsten Sachs
Global Change Biology, Volume 29, Issue 8

Wetlands are the largest natural source of methane (CH4 ) to the atmosphere. The eddy covariance method provides robust measurements of net ecosystem exchange of CH4 , but interpreting its spatiotemporal variations is challenging due to the co-occurrence of CH4 production, oxidation, and transport dynamics. Here, we estimate these three processes using a data-model fusion approach across 25 wetlands in temperate, boreal, and Arctic regions. Our data-constrained model-iPEACE-reasonably reproduced CH4 emissions at 19 of the 25 sites with normalized root mean square error of 0.59, correlation coefficient of 0.82, and normalized standard deviation of 0.87. Among the three processes, CH4 production appeared to be the most important process, followed by oxidation in explaining inter-site variations in CH4 emissions. Based on a sensitivity analysis, CH4 emissions were generally more sensitive to decreased water table than to increased gross primary productivity or soil temperature. For periods with leaf area index (LAI) of ≥20% of its annual peak, plant-mediated transport appeared to be the major pathway for CH4 transport. Contributions from ebullition and diffusion were relatively high during low LAI (<20%) periods. The lag time between CH4 production and CH4 emissions tended to be short in fen sites (3 ± 2 days) and long in bog sites (13 ± 10 days). Based on a principal component analysis, we found that parameters for CH4 production, plant-mediated transport, and diffusion through water explained 77% of the variance in the parameters across the 19 sites, highlighting the importance of these parameters for predicting wetland CH4 emissions across biomes. These processes and associated parameters for CH4 emissions among and within the wetlands provide useful insights for interpreting observed net CH4 fluxes, estimating sensitivities to biophysical variables, and modeling global CH4 fluxes.

2022

DOI bib
Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems
Donatella Zona, Peter M. Lafleur, Koen Hufkens, Barbara Bailey, Beniamino Gioli, George Burba, Jordan P. Goodrich, A. K. Liljedahl, Eugénie Euskirchen, Jennifer D. Watts, Mary Farina, J. S. Kimball, Martin Heimann, Mathias Göckede, Martijn Pallandt, Torben R. Christensen, Mikhail Mastepanov, Efrén López‐Blanco, Marcin Jackowicz-Korczyński, A. J. Dolman, Luca Belelli Marchesini, R. Commane, Steven C. Wofsy, Charles E. Miller, David A. Lipson, Josh Hashemi, Kyle A. Arndt, Lars Kutzbach, David Holl, Julia Boike, Christian Wille, Torsten Sachs, Aram Kalhori, Xingyu Song, Xiaofeng Xu, Elyn Humphreys, C. Koven, Oliver Sonnentag, Gesa Meyer, Gabriel Gosselin, Philip Marsh, Walter C. Oechel
Scientific Reports, Volume 12, Issue 1

Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO2 later in the season.

DOI bib
The importance of calcium and amorphous silica for arctic soil CO2 production
Peter Stimmler, Mathias Göckede, Susan M. Natali, Oliver Sonnentag, Benjamin Gilfedder, Nia Perron, Jörg Schaller
Frontiers in Environmental Science, Volume 10

Future warming of the Arctic not only threatens to destabilize the enormous pool of organic carbon accumulated in permafrost soils but may also mobilize elements such as calcium (Ca) or silicon (Si). While for Greenlandic soils, it was recently shown that both elements may have a strong effect on carbon dioxide (CO 2 ) production with Ca strongly decreasing and Si increasing CO 2 production, little is known about the effects of Si and Ca on carbon cycle processes in soils from Siberia, the Canadian Shield, or Alaska. In this study, we incubated five different soils (rich organic soil from the Canadian Shield and from Siberia (one from the top and one from the deeper soil layer) and one acidic and one non-acidic soil from Alaska) for 6 months under both drained and waterlogged conditions and at different Ca and amorphous Si (ASi) concentrations. Our results show a strong decrease in soil CO 2 production for all soils under both drained and waterlogged conditions with increasing Ca concentrations. The ASi effect was not clear across the different soils used, with soil CO 2 production increasing, decreasing, or not being significantly affected depending on the soil type and if the soils were initially drained or waterlogged. We found no methane production in any of the soils regardless of treatment. Taking into account the predicted change in Si and Ca availability under a future warmer Arctic climate, the associated fertilization effects would imply potentially lower greenhouse gas production from Siberia and slightly increased greenhouse gas emissions from the Canadian Shield. Including Ca as a controlling factor for Arctic soil CO 2 production rates may, therefore, reduces uncertainties in modeling future scenarios on how Arctic regions may respond to climate change.

2019

DOI bib
Large loss of CO2 in winter observed across the northern permafrost region
Susan M. Natali, Jennifer D. Watts, Brendan M. Rogers, Stefano Potter, S. Ludwig, A. K. Selbmann, Patrick F. Sullivan, Benjamin W. Abbott, Kyle A. Arndt, Leah Birch, Mats Björkman, A. Anthony Bloom, Gerardo Celis, Torben R. Christensen, Casper T. Christiansen, R. Commane, Elisabeth J. Cooper, Patrick Crill, C. I. Czimczik, S. P. Davydov, Jinyang Du, Jocelyn Egan, Bo Elberling, Eugénie Euskirchen, Thomas Friborg, Hélène Genet, Mathias Göckede, Jordan P. Goodrich, Paul Grogan, Manuel Helbig, Elchin Jafarov, Julie D. Jastrow, Aram Kalhori, Yongwon Kim, J. S. Kimball, Lars Kutzbach, Mark J. Lara, Klaus Steenberg Larsen, Bang Yong Lee, Zhihua Liu, M. M. Loranty, Magnus Lund, Massimo Lupascu, Nima Madani, Avni Malhotra, Roser Matamala, J. W. Mcfarland, A. David McGuire, Anders Michelsen, C. Minions, Walter C. Oechel, David Olefeldt, Frans‐Jan W. Parmentier, Norbert Pirk, Benjamin Poulter, William L. Quinton, Fereidoun Rezanezhad, David Risk, Torsten Sachs, Kevin Schaefer, Niels Martin Schmidt, Edward A. G. Schuur, Philipp Semenchuk, Gaius R. Shaver, Oliver Sonnentag, Gregory Starr, Claire C. Treat, Mark P. Waldrop, Yihui Wang, Jeffrey M. Welker, Christian Wille, Xiaofeng Xu, Zhen Zhang, Qianlai Zhuang, Donatella Zona
Nature Climate Change, Volume 9, Issue 11

Recent warming in the Arctic, which has been amplified during the winter1-3, greatly enhances microbial decomposition of soil organic matter and subsequent release of carbon dioxide (CO2)4. However, the amount of CO2 released in winter is highly uncertain and has not been well represented by ecosystem models or by empirically-based estimates5,6. Here we synthesize regional in situ observations of CO2 flux from arctic and boreal soils to assess current and future winter carbon losses from the northern permafrost domain. We estimate a contemporary loss of 1662 Tg C yr-1 from the permafrost region during the winter season (October through April). This loss is greater than the average growing season carbon uptake for this region estimated from process models (-1032 Tg C yr-1). Extending model predictions to warmer conditions in 2100 indicates that winter CO2 emissions will increase 17% under a moderate mitigation scenario-Representative Concentration Pathway (RCP) 4.5-and 41% under business-as-usual emissions scenario-RCP 8.5. Our results provide a new baseline for winter CO2 emissions from northern terrestrial regions and indicate that enhanced soil CO2 loss due to winter warming may offset growing season carbon uptake under future climatic conditions.

DOI bib
Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations
Olli Peltola, Timo Vesala, Yao Gao, Olle Räty, Pavel Alekseychik, Mika Aurela, Bogdan H. Chojnicki, Ankur R. Desai, A. J. Dolman, Eugénie Euskirchen, Thomas Friborg, Mathias Göckede, Manuel Helbig, Elyn Humphreys, Robert B. Jackson, Georg Jocher, Fortunat Joos, Janina Klatt, Sara Knox, Natalia Kowalska, Lars Kutzbach, Sebastian Lienert, Annalea Lohila, Ivan Mammarella, Daniel F. Nadeau, Mats Nilsson, Walter C. Oechel, Matthias Peichl, Thomas G. Pypker, William L. Quinton, Janne Rinne, Torsten Sachs, Mateusz Samson, Hans Peter Schmid, Oliver Sonnentag, Christian Wille, Donatella Zona, Tuula Aalto
Earth System Science Data, Volume 11, Issue 3

Abstract. Natural wetlands constitute the largest and most uncertain source of methane (CH4) to the atmosphere and a large fraction of them are found in the northern latitudes. These emissions are typically estimated using process (“bottom-up”) or inversion (“top-down”) models. However, estimates from these two types of models are not independent of each other since the top-down estimates usually rely on the a priori estimation of these emissions obtained with process models. Hence, independent spatially explicit validation data are needed. Here we utilize a random forest (RF) machine-learning technique to upscale CH4 eddy covariance flux measurements from 25 sites to estimate CH4 wetland emissions from the northern latitudes (north of 45∘ N). Eddy covariance data from 2005 to 2016 are used for model development. The model is then used to predict emissions during 2013 and 2014. The predictive performance of the RF model is evaluated using a leave-one-site-out cross-validation scheme. The performance (Nash–Sutcliffe model efficiency =0.47) is comparable to previous studies upscaling net ecosystem exchange of carbon dioxide and studies comparing process model output against site-level CH4 emission data. The global distribution of wetlands is one major source of uncertainty for upscaling CH4. Thus, three wetland distribution maps are utilized in the upscaling. Depending on the wetland distribution map, the annual emissions for the northern wetlands yield 32 (22.3–41.2, 95 % confidence interval calculated from a RF model ensemble), 31 (21.4–39.9) or 38 (25.9–49.5) Tg(CH4) yr−1. To further evaluate the uncertainties of the upscaled CH4 flux data products we also compared them against output from two process models (LPX-Bern and WetCHARTs), and methodological issues related to CH4 flux upscaling are discussed. The monthly upscaled CH4 flux data products are available at https://doi.org/10.5281/zenodo.2560163 (Peltola et al., 2019).
Search
Co-authors
Venues