Midori Depante
2019
Hydraulic redistribution and hydrological controls on aspen transpiration and establishment in peatlands following wildfire
Midori Depante,
Matthew Q. Morison,
Richard M. Petrone,
K. J. Devito,
Nicholas Kettridge,
J. M. Waddington
Hydrological Processes, Volume 33, Issue 21
Abstract In the sub‐humid Western Boreal Plains of Alberta, where evapotranspiration often exceeds precipitation, trembling aspen ( Populus tremuloides Michx.) uplands often depend on adjacent peatlands for water supply through hydraulic redistribution. Wildfire is common in the Boreal Plains, so the resilience of the transfer of water from peatlands to uplands through roots immediately following wildfire may have implications for aspen succession. The objective of this research was to characterize post‐fire peatland‐upland hydraulic connectivity and assess controls on aspen transpiration (as a measure of stress and productivity) among landscape topographic positions. In May 2011, a wildfire affected 90,000 ha of north central Alberta, including the Utikuma Region Study Area (URSA). Portions of an URSA glacio‐fluval outwash lake catchment were burned, which included forests and a small peatland. Within 1 year after the fire, aspen were found to be growing in both the interior and margins of this peatland. Across recovering land units, transpiration varied along a topographic gradient of upland midslope (0.42 mm hr −1 ) > upland hilltop (0.29 mm hr −1 ) > margin (0.23 mm hr −1 ) > peatland (0.10 mm hr −1 ); similar trends were observed with leaf area and stem heights. Although volumetric water content was below field capacity, P. tremuloides were sustained through roots present, likely before fire, in peatland margins through hydraulic redistribution. Evidence for this was observed through the analysis of oxygen (δ 18 O) and hydrogen (δ 2 H) isotopes where upland xylem and peat core signatures were −10.0‰ and −117.8‰ and −9.2‰ and −114.0‰, respectively. This research highlights the potential importance of hydraulic redistribution to forest sustainability and recovery, in which the continued delivery of water may result in the encroachment of aspen into peatlands. As such, we suggest that through altering ecosystem services, peatland margins following fire may be at risk to aspen colonization during succession.
2018
Potential influence of nutrient availability along a hillslope: Peatland gradient on aspen recovery following fire
Midori Depante,
Richard M. Petrone,
K. J. Devito,
Nicholas Kettridge,
Merrin L. Macrae,
Carl Mendoza,
J. M. Waddington
Ecohydrology, Volume 11, Issue 5
The Boreal Plains (BP) of Western Canada have been exposed to increasing disturbance by wildfire and host a mixture of upland‐wetland‐pond complexes with substantial quantities of trembling aspen (Populus tremuloides Michx.) throughout the terrestrial areas. The ability of these tree species to regenerate within both upland and wetland areas of the BP following wildfire is unclear. The purpose of this study was to investigate the influence of fire on nutrient dynamics in soil and water in peatlands and forested landscapes in the BP and relate this to aspen regeneration. Nutrient concentrations, nutrient supply rates, and net nutrient mineralization rates were determined in burned and unburned sections of a peatland and forest and compared with the regeneration of aspen. NO3−, NH4+, and P varied spatially throughout the landscape, and differences were observed between peatland and upland areas. In general, differences in nutrient dynamics were not observed between burned and unburned areas, with the exception of P. Nutrient and growth data suggest that aspen do not require nutrient‐rich conditions for regeneration and instead relied on forest litter to satisfy nutrient demands. Although the peatlands contained high nutrients, aspen did not flourish in the combination of anoxic and aerobic organic‐rich soils present in this area. Although aspen may use peat water and nutrients through their rooting zones, peatlands are unsuitable for aspen re‐establishment in the long‐term. However, the combination of abundant nutrients in surface mineral soils in peat margins may indicate the vulnerability of margins to upland transformations in later successional stages.
Search
Co-authors
- Richard M. Petrone 2
- K. J. Devito 2
- Nicholas Kettridge 2
- J. M. Waddington 2
- Merrin L. Macrae 1
- show all...
Venues
- GWF2