2023
Permafrost thaw/degradation in the Northern Hemisphere due to global warming is projected to accelerate in coming decades. Assessment of this trend requires improved understanding of the evolution and dynamics of permafrost areas. Land surface models (LSMs) are well-suited for this due to their physical basis and large-scale applicability. However, LSM application is challenging because (a) LSMs demand extensive and accurate meteorological forcing data, which are not readily available for historic conditions and only available with significant biases for future climate, (b) LSMs possess a large number of model parameters, and (c) observations of thermal/hydraulic regimes to constrain those parameters are severely limited. This study addresses these challenges by applying the MESH-CLASS modeling framework (Modélisation Environmenntale communautaire—Surface et Hydrology embedding the Canadian Land Surface Scheme) to three regions within the Mackenzie River Basin, Canada, under various meteorological forcing data sets, using the variogram analysis of response surfaces framework for sensitivity analysis and threshold-based identifiability analysis. The study shows that the modeler may face complex trade-offs when choosing a forcing data set; for current and future scenarios, forcing data require multi-variate bias correction, and some data sets enable the representation of some aspects of permafrost dynamics, but are inadequate for others. The results identify the most influential model parameters and show that permafrost simulation is most sensitive to parameters controlling surface insulation and runoff generation. But the identifiability analysis reveals that many of the most influential parameters are unidentifiable. These conclusions can inform future efforts for data collection and model parameterization.
Permafrost thaw/degradation in the Northern Hemisphere due to global warming is projected to accelerate in coming decades. Assessment of this trend requires improved understanding of the evolution and dynamics of permafrost areas. Land surface models (LSMs) are well-suited for this due to their physical basis and large-scale applicability. However, LSM application is challenging because (a) LSMs demand extensive and accurate meteorological forcing data, which are not readily available for historic conditions and only available with significant biases for future climate, (b) LSMs possess a large number of model parameters, and (c) observations of thermal/hydraulic regimes to constrain those parameters are severely limited. This study addresses these challenges by applying the MESH-CLASS modeling framework (Modélisation Environmenntale communautaire—Surface et Hydrology embedding the Canadian Land Surface Scheme) to three regions within the Mackenzie River Basin, Canada, under various meteorological forcing data sets, using the variogram analysis of response surfaces framework for sensitivity analysis and threshold-based identifiability analysis. The study shows that the modeler may face complex trade-offs when choosing a forcing data set; for current and future scenarios, forcing data require multi-variate bias correction, and some data sets enable the representation of some aspects of permafrost dynamics, but are inadequate for others. The results identify the most influential model parameters and show that permafrost simulation is most sensitive to parameters controlling surface insulation and runoff generation. But the identifiability analysis reveals that many of the most influential parameters are unidentifiable. These conclusions can inform future efforts for data collection and model parameterization.
Abstract. Hydrologic-land surface models (H-LSMs) provide physically-based understanding and predictions of the current and future states of the world’s vast high-latitude permafrost regions. Two major challenges, however, hamper their parametrization and validation when concurrently representing hydrology and permafrost. One is the high computational complexity, exacerbated by the need to include a deep soil profile to adequately capture the freeze/thaw cycles and heat storage. The other is that soil-temperature data are severely limited, and traditional model validation, based on streamflow, can show the right fit to these data for the wrong reasons. There are few observational sites for such vast, heterogeneous regions, and remote sensing provides only limited support. In light of these challenges, we develop 16 parametrizations of a Canadian H-LSM, MESH, for the sub-arctic Liard River Basin and validate them using three data sources: streamflows at multiple gauges, soil temperature profiles from few available boreholes, and multiple permafrost maps. The different parametrizations favor different sources of data and it is challenging to configure a model faithful to all three data sources, which are at times inconsistent with each other. Overall, the results show that: (1) surface insulation through snow cover primarily regulates permafrost dynamics after model initialization effects decay over, relatively long time and (2) different parametrizations yield different partitioning patterns of solid-vs-liquid soil-water and produce different low-flow but similar high-flow regimes. We conclude that, given data scarcity, an ensemble of model parametrizations is essential to provide a reliable picture of the current states and future spatio-temporal co-evolution of permafrost and hydrology.
2022
Permafrost plays an important role in the hydrology of arctic/subarctic regions. However, permafrost thaw/degradation has been observed over recent decades in the Northern Hemisphere and is projected to accelerate. Hence, understanding the evolution of permafrost areas is urgently needed. Land surface models (LSMs) are well-suited for predicting permafrost dynamics due to their physical basis and large-scale applicability. However, LSM application is challenging because of the large number of model parameters and the complex memory of state variables. Significant interactions among the underlying processes and the paucity of observations of thermal/hydraulic regimes add further difficulty. This study addresses the challenges of LSM application by evaluating the uncertainty due to meteorological forcing, assessing the sensitivity of simulated permafrost dynamics to LSM parameters, and highlighting issues of parameter identifiability. Modelling experiments are implemented using the MESH-CLASS framework. The VARS sensitivity analysis and traditional threshold-based identifiability analysis are used to assess various aspects of permafrost dynamics for three regions within the Mackenzie River Basin. The study shows that the modeller may face significant trade-offs when choosing a forcing dataset as some datasets enable the representation of some aspects of permafrost dynamics, while being inadequate for others. The results also emphasize the high sensitivity of various aspects of permafrost simulation to parameters controlling surface insulation and soil texture; a detailed list of influential parameters is presented. Identifiability analysis reveals that many of the most influential parameters for permafrost simulation are unidentifiable. These conclusions will hopefully inform future efforts in data collection and model parametrization.
Ice jams are impacted by several climatic factors that are likely to change under a future warming climate. Due to the complexity of river ice phenology, projection of future ice jams is challenging. However, it is important to be able to project future ice jam behavior. Additionally, ice jam research is limited by the shortage of long-term monitoring data. In this paper, a novel framework for projecting future ice jam behavior is developed and implemented for ice jams in a data-sparse region, the Slave River Delta, NWT, Canada, situated in the Mackenzie River Basin (MRB). This framework employs both historical records and future hydro-meteorological data, acquired from climate and hydrological models, to drive the river ice models and quantify climate-induced influences on ice jams. Ice jam behavior analysis is based on three outputs of the framework: potential of river ice jamming, ice jam initiation date, and the stage frequency distribution of backwater elevation induced by ice jams. Trends of later ice jam initiation and decreased possibility of ice jam formation are projected, but ice jamming events in the Slave River Delta are likely to be more severe and cause higher backwater levels.
Permafrost thaw has been observed in recent decades in the Northern Hemisphere and is expected to accelerate with continued global warming. Predicting the future of permafrost requires proper representation of the interrelated surface/subsurface thermal and hydrologic regimes. Land surface models (LSMs) are well suited for such predictions, as they couple heat and water interactions across soil-vegetation-atmosphere interfaces and can be applied over large scales. LSMs, however, are challenged by the long-term thermal and hydraulic memories of permafrost and the paucity of historical records to represent permafrost dynamics under transient climate conditions. In this study, we aim to understand better how LSMs function under different spin-up states, which facilitates addressing the challenge of model initialization by characterizing the impact of initial climate conditions and initial soil frozen and liquid water contents on the simulation length required to reach equilibrium. Further, we quantify how the uncertainty in model initialization propagates to simulated permafrost dynamics. Modelling experiments are conducted with the Modélisation Environmentale Communautaire—Surface and Hydrology (MESH) framework and its embedded Canadian land surface scheme (CLASS). The study area is in the Liard River basin in the Northwest Territories of Canada with sporadic and discontinuous regions. Results show that uncertainty in model initialization controls various attributes of simulated permafrost, especially the active layer thickness, which could change by 0.5–1.5 m depending on the initial condition chosen. The least number of spin-up cycles is achieved with near field capacity condition, but the number of cycles varies depending on the spin-up year climate. We advise an extended spin-up of 200–1000 cycles to ensure proper model initialization under different climatic conditions and initial soil moisture contents.
DOI
bib
abs
Advances in modelling large river basins in cold regions with Modélisation Environmentale Communautaire—Surface and Hydrology (MESH), the Canadian hydrological land surface scheme
H. S. Wheater,
John W. Pomeroy,
Alain Pietroniro,
Bruce Davison,
Mohamed Elshamy,
Fuad Yassin,
Prabin Rokaya,
Abbas Fayad,
Zelalem Tesemma,
Daniel Princz,
Youssef Loukili,
C. M. DeBeer,
A. M. Ireson,
Saman Razavi,
Karl‐Erich Lindenschmidt,
Amin Elshorbagy,
Matthew K. MacDonald,
Mohamed S. Abdelhamed,
Amin Haghnegahdar,
Ala Bahrami
Hydrological Processes, Volume 36, Issue 4
Cold regions provide water resources for half the global population yet face rapid change. Their hydrology is dominated by snow, ice and frozen soils, and climate warming is having profound effects. Hydrological models have a key role in predicting changing water resources but are challenged in cold regions. Ground-based data to quantify meteorological forcing and constrain model parameterization are limited, while hydrological processes are complex, often controlled by phase change energetics. River flows are impacted by poorly quantified human activities. This paper discusses the scientific and technical challenges of the large-scale modelling of cold region systems and reports recent modelling developments, focussing on MESH, the Canadian community hydrological land surface scheme. New cold region process representations include improved blowing snow transport and sublimation, lateral land-surface flow, prairie pothole pond storage dynamics, frozen ground infiltration and thermodynamics, and improved glacier modelling. New algorithms to represent water management include multistage reservoir operation. Parameterization has been supported by field observations and remotely sensed data; new methods for parameter identification have been used to evaluate model uncertainty and support regionalization. Additionally, MESH has been linked to broader decision-support frameworks, including river ice simulation and hydrological forecasting. The paper also reports various applications to the Saskatchewan and Mackenzie River basins in western Canada (0.4 and 1.8 million km2). These basins arise in glaciated mountain headwaters, are partly underlain by permafrost, and include remote and incompletely understood forested, wetland, agricultural and tundra ecoregions. These illustrate the current capabilities and limitations of cold region modelling, and the extraordinary challenges to prediction, including the need to overcoming biases in forcing data sets, which can have disproportionate effects on the simulated hydrology.
Abstract The Yukon River Basin (YRB) is one of the most important river networks shared between Canada and The United States, and is one of the largest river basins in the subarctic region of North America. The Canadian part of the YRB is characterized by steeply sloped, partly glaciated mountain headwaters that generate considerable runoff during melt of glaciers and seasonal snowcover. Snow redistribution, snowmelt, glacier melt and freezing–thawing soil processes in winter and spring along with summertime rainfall‐runoff and evapotranspiration processes are thus key components of streamflow generation in the basin, making conceptual rainfall‐runoff models unsuitable for this cold region. Due to the remote high latitudes and high altitudes of the basin, there is a paucity of observational data, making heavily calibrated conceptual modeling approaches infeasible. At the request of the Yukon Government, this project developed and operationalized a streamflow forecasting system for the Yukon River and several of its tributary rivers using a distributed land surface modeling approach developed for large‐scale implementation in cold regions. This represents a substantial advance in bringing operational hydrological forecasting to the Canadian subarctic for the first time. This experience will inform future research to operation improvements as Canada develops a nationally coordinated flood forecast system.
2021
DOI
bib
abs
Great Lakes Runoff Intercomparison Project Phase 3: Lake Erie (GRIP-E)
Juliane Mai,
Bryan A. Tolson,
Helen C. Shen,
Étienne Gaborit,
Vincent Fortin,
Nicolas Gasset,
Hervé Awoye,
Tricia A. Stadnyk,
Lauren M. Fry,
Emily A. Bradley,
Frank Seglenieks,
André Guy Tranquille Temgoua,
Daniel Princz,
Shervan Gharari,
Amin Haghnegahdar,
Mohamed Elshamy,
Saman Razavi,
Martin Gauch,
Jimmy Lin,
Xiaojing Ni,
Yongping Yuan,
Meghan McLeod,
N. B. Basu,
Rohini Kumar,
Oldřich Rakovec,
Luis Samaniego,
Sabine Attinger,
Narayan Kumar Shrestha,
Prasad Daggupati,
Tirthankar Roy,
Sungwook Wi,
Timothy Hunter,
James R. Craig,
Alain Pietroniro
Journal of Hydrologic Engineering, Volume 26, Issue 9
AbstractHydrologic model intercomparison studies help to evaluate the agility of models to simulate variables such as streamflow, evaporation, and soil moisture. This study is the third in a sequen...
DOI
bib
abs
Advances in modelling large river basins in cold regions with Modélisation Environmentale Communautaire - Surface and Hydrology (MESH), the Canadian hydrological land surface scheme
H. S. Wheater,
John W. Pomeroy,
Alain Pietroniro,
Bruce Davison,
Mohamed Elshamy,
Fuad Yassin,
Prabin Rokaya,
Abbas Fayad,
Zelalem Tesemma,
Daniel Princz,
Youssef Loukili,
C. M. DeBeer,
Andrew Ireson,
Saman Razavi,
Karl‐Erich Lindenschmidt,
Amin Elshorbagy,
Matthew K. MacDonald,
Mohamed S. Abdelhamed,
Amin Haghnegahdar,
Ala Bahrami
Cold regions provide water resources for half the global population yet face rapid change. Their hydrology is dominated by snow, ice and frozen soils, and climate warming is having profound effects. Hydrological models have a key role in predicting changing water resources, but are challenged in cold regions. Ground-based data to quantify meteorological forcing and constrain model parameterization are limited, while hydrological processes are complex, often controlled by phase change energetics. River flows are impacted by poorly quantified human activities. This paper reports scientific developments over the past decade of MESH, the Canadian community hydrological land surface scheme. New cold region process representation includes improved blowing snow transport and sublimation, lateral land-surface flow, prairie pothole storage dynamics, frozen ground infiltration and thermodynamics, and improved glacier modelling. New algorithms to represent water management include multi-stage reservoir operation. Parameterization has been supported by field observations and remotely sensed data; new methods for parameter identification have been used to evaluate model uncertainty and support regionalization. Additionally, MESH has been linked to broader decision-support frameworks, including river ice simulation and hydrological forecasting. The paper also reports various applications to the Saskatchewan and Mackenzie River basins in western Canada (0.4 and 1.8 million km). These basins arise in glaciated mountain headwaters, are partly underlain by permafrost, and include remote and incompletely understood forested, wetland, agricultural and tundra ecoregions. This imposes extraordinary challenges to prediction, including the need to overcoming biases in forcing data sets, which can have disproportionate effects on the simulated hydrology.
DOI
bib
abs
Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 2: Future change in cryosphere, vegetation, and hydrology
C. M. DeBeer,
H. S. Wheater,
John W. Pomeroy,
Alan Barr,
Jennifer L. Baltzer,
Jill F. Johnstone,
M. R. Turetsky,
Ronald E. Stewart,
Masaki Hayashi,
Garth van der Kamp,
Shawn J. Marshall,
Elizabeth M. Campbell,
Philip Marsh,
Sean K. Carey,
William L. Quinton,
Yanping Li,
Saman Razavi,
Aaron Berg,
Jeffrey J. McDonnell,
Christopher Spence,
Warren Helgason,
A. M. Ireson,
T. Andrew Black,
Mohamed Elshamy,
Fuad Yassin,
Bruce Davison,
Allan Howard,
Julie M. Thériault,
Kevin Shook,
M. N. Demuth,
Alain Pietroniro
Hydrology and Earth System Sciences, Volume 25, Issue 4
Abstract. The interior of western Canada, like many similar cold mid- to high-latitude regions worldwide, is undergoing extensive and rapid climate and environmental change, which may accelerate in the coming decades. Understanding and predicting changes in coupled climate–land–hydrological systems are crucial to society yet limited by lack of understanding of changes in cold-region process responses and interactions, along with their representation in most current-generation land-surface and hydrological models. It is essential to consider the underlying processes and base predictive models on the proper physics, especially under conditions of non-stationarity where the past is no longer a reliable guide to the future and system trajectories can be unexpected. These challenges were forefront in the recently completed Changing Cold Regions Network (CCRN), which assembled and focused a wide range of multi-disciplinary expertise to improve the understanding, diagnosis, and prediction of change over the cold interior of western Canada. CCRN advanced knowledge of fundamental cold-region ecological and hydrological processes through observation and experimentation across a network of highly instrumented research basins and other sites. Significant efforts were made to improve the functionality and process representation, based on this improved understanding, within the fine-scale Cold Regions Hydrological Modelling (CRHM) platform and the large-scale Modélisation Environmentale Communautaire (MEC) – Surface and Hydrology (MESH) model. These models were, and continue to be, applied under past and projected future climates and under current and expected future land and vegetation cover configurations to diagnose historical change and predict possible future hydrological responses. This second of two articles synthesizes the nature and understanding of cold-region processes and Earth system responses to future climate, as advanced by CCRN. These include changing precipitation and moisture feedbacks to the atmosphere; altered snow regimes, changing balance of snowfall and rainfall, and glacier loss; vegetation responses to climate and the loss of ecosystem resilience to wildfire and disturbance; thawing permafrost and its influence on landscapes and hydrology; groundwater storage and cycling and its connections to surface water; and stream and river discharge as influenced by the various drivers of hydrological change. Collective insights, expert elicitation, and model application are used to provide a synthesis of this change over the CCRN region for the late 21st century.
• Development of the ensemble-based data assimilation framework is examined. • GRACE assimilation improves the simulation of snow estimates at the basin and grid scales. • Data assimilation can effectively constrain the amplitude of modeled water storage dynamics. • GRACE data assimilation improves the simulation of high flows during snowmelt season. Accurate estimation of snow mass or snow water equivalent (SWE) over space and time is required for global and regional predictions of the effects of climate change. This work investigates whether integration of remotely sensed terrestrial water storage (TWS) information, which is derived from the Gravity Recovery and Climate Experiment (GRACE), can improve SWE and streamflow simulations within a semi-distributed hydrology land surface model. A data assimilation (DA) framework was developed to combine TWS observations with the MESH (Modélisation Environnementale Communautaire – Surface Hydrology) model using an ensemble Kalman smoother (EnKS). The snow-dominated Liard Basin was selected as a case study. The proposed assimilation methodology reduced bias of monthly SWE simulations at the basin scale by 17.5% and improved unbiased root-mean-square difference (ubRMSD) by 23%. At the grid scale, the DA method improved ubRMSD values and correlation coefficients for 85% and 97% of the grid cells, respectively. Effects of GRACE DA on streamflow simulations were evaluated against observations from three river gauges, where it effectively improved the simulation of high flows during snowmelt season from April to June. The influence of GRACE DA on the total flow volume and low flows was found to be variable. In general, the use of GRACE observations in the assimilation framework not only improved the simulation of SWE, but also effectively influenced streamflow simulations.
2020
Abstract. Cold region hydrology is very sensitive to the impacts of climate warming. Impacts of warming over recent decades in western Canada include glacier retreat, permafrost thaw, and changing patterns of precipitation, with an increased proportion of winter precipitation falling as rainfall and shorter durations of snow cover, as well as consequent changes in flow regimes. Future warming is expected to continue along these lines. Physically realistic and sophisticated hydrological models driven by reliable climate forcing can provide the capability to assess hydrological responses to climate change. However, the provision of reliable forcing data remains problematic, particularly in data-sparse regions. Hydrological processes in cold regions involve complex phase changes and so are very sensitive to small biases in the driving meteorology, particularly in temperature and precipitation, including precipitation phase. Cold regions often have sparse surface observations, particularly at high elevations that generate a large amount of runoff. This paper aims to provide an improved set of forcing data for large-scale hydrological models for climate change impact assessment. The best available gridded data in Canada are from the high-resolution forecasts of the Global Environmental Multiscale (GEM) atmospheric model and outputs of the Canadian Precipitation Analysis (CaPA), but these datasets have a short historical record. The EU WATCH ERA-Interim reanalysis (WFDEI) has a longer historical record but has often been found to be biased relative to observations over Canada. The aim of this study, therefore, is to blend the strengths of both datasets (GEM-CaPA and WFDEI) to produce a less-biased long-record product (WFDEI-GEM-CaPA) for hydrological modelling and climate change impact assessment over the Mackenzie River Basin. First, a multivariate generalization of the quantile mapping technique was implemented to bias-correct WFDEI against GEM-CaPA at 3 h ×0.125∘ resolution during the 2005–2016 overlap period, followed by a hindcast of WFDEI-GEM-CaPA from 1979. The derived WFDEI-GEM-CaPA data are validated against station observations as a preliminary step to assess their added value. This product is then used to bias-correct climate projections from the Canadian Centre for Climate Modelling and Analysis Canadian Regional Climate Model (CanRCM4) between 1950 and 2100 under RCP8.5, and an analysis of the datasets shows that the biases in the original WFDEI product have been removed and the climate change signals in CanRCM4 are preserved. The resulting bias-corrected datasets are a consistent set of historical and climate projection data suitable for large-scale modelling and future climate scenario analysis. The final historical product (WFDEI-GEM-CaPA, 1979–2016) is freely available at the Federated Research Data Repository at https://doi.org/10.20383/101.0111 (Asong et al., 2018), while the original and corrected CanRCM4 data are available at https://doi.org/10.20383/101.0162 (Asong et al., 2019).
Abstract. Permafrost is an important feature of cold-region hydrology, particularly in river basins such as the Mackenzie River basin (MRB), and it needs to be properly represented in hydrological and land surface models (H-LSMs) built into existing Earth system models (ESMs), especially under the unprecedented climate warming trends that have been observed. Higher rates of warming have been reported in high latitudes compared to the global average, resulting in permafrost thaw with wide-ranging implications for hydrology and feedbacks to climate. The current generation of H-LSMs is being improved to simulate permafrost dynamics by allowing deep soil profiles and incorporating organic soils explicitly. Deeper soil profiles have larger hydraulic and thermal memories that require more effort to initialize. This study aims to devise a robust, yet computationally efficient, initialization and parameterization approach applicable to regions where data are scarce and simulations typically require large computational resources. The study further demonstrates an upscaling approach to inform large-scale ESM simulations based on the insights gained by modelling at small scales. We used permafrost observations from three sites along the Mackenzie River valley spanning different permafrost classes to test the validity of the approach. Results show generally good performance in reproducing present-climate permafrost properties at the three sites. The results also emphasize the sensitivity of the simulations to the soil layering scheme used, the depth to bedrock, and the organic soil properties.
Anthropogenic and climatic‐induced changes to flow regimes pose significant risks to river systems. Northern rivers and their deltas are particularly vulnerable due to the disproportionate warming of the Northern Hemisphere compared with the Southern Hemisphere. Of special interest is the Peace–Athabasca Delta (PAD) in western Canada, a productive deltaic lake and wetland ecosystem, which has been recognized as a Ramsar site. Both climate‐ and regulation‐induced changes to the hydrological regime of the Peace River have raised concerns over the delta's ecological health. With the damming of the headwaters, the role of downstream unregulated tributaries has become more important in maintaining, to a certain degree, a natural flow regime, particularly during open‐water conditions. However, their flow contributions to the mainstem river under future climatic conditions remain largely uncertain. In this study, we first evaluated the ability of a land‐surface hydrological model to simulate hydro‐ecological relevant indicators, highlighting the model's strengths and weaknesses. Then, we investigated the streamflow conditions in the Smoky River, the largest unregulated tributary of the Peace River, in the 2071–2100 versus the 1981–2010 periods. Our modelling results revealed significant changes in the hydrological regime of the Smoky River, such as increased discharge in winter (+190%) and spring (+130%) but reduced summer flows (−33%) in the 2071–2100 period compared with the baseline period, which will have implications for the sustainability of the downstream PAD. In particular, the projected reductions in 30‐day and 90‐day maximum flows in the Smoky River will affect open‐water flooding, which is important in maintaining lake levels and connectivity to perimeter delta wetlands in the Peace sector of the PAD. The evaluation of breakup and freeze‐up flows for the 2071–2100 period showed mixed implications for the ice‐jam flooding, which is essential for recharging high‐elevation deltaic basins. Thus, despite projected increase in annual and spring runoff in the 2071–2100 period from the Smoky sub‐basin, the sustainability of the PAD still remains uncertain.
2019
Abstract. Reservoirs significantly affect flow regimes in watershed systems by changing the magnitude and timing of streamflows. Failure to represent these effects limits the performance of hydrological and land surface models (H-LSMs) in the many highly regulated basins across the globe and limits the applicability of such models to investigate the futures of watershed systems through scenario analysis (e.g., scenarios of climate, land use, or reservoir regulation changes). An adequate representation of reservoirs and their operation in an H-LSM is therefore essential for a realistic representation of the downstream flow regime. In this paper, we present a general parametric reservoir operation model based on piecewise linear relationships between reservoir storage, inflow, and release, to approximate actual reservoir operations. For the identification of the model parameters, we propose two strategies: (a) a generalized parameterization that requires a relatively limited amount of data; and (b) direct calibration via multi-objective optimization when more data on historical storage and release are available. We use data from 37 reservoir case studies located in several regions across the globe for developing and testing the model. We further build this reservoir operation model into the MESH modelling system, which is a large-scale H-LSM. Our results across the case studies show that the proposed reservoir model with both of the parameter identification strategies leads to improved simulation accuracy compared with the other widely used approaches for reservoir operation simulation. We further show the significance of enabling MESH with this reservoir model and discuss the interdependent effects of the simulation accuracy of natural processes and that of reservoir operation on the overall model performance. The reservoir operation model is generic and can be integrated into any H-LSM.
Abstract. Reservoirs significantly affect flow regimes in watershed systems by changing the magnitude and timing of streamflows. Failure to represent these effects limits the performance of hydrological and land-surface models (H-LSMs) in the many highly regulated basins across the globe and limits the applicability of such models to investigate the futures of watershed systems through scenario analysis (e.g., scenarios of climate, land use, or reservoir regulation changes). An adequate representation of reservoirs and their operation in an H-LSM is therefore essential for a realistic representation of the downstream flow regime. In this paper, we present a general parametric reservoir operation model based on piecewise-linear relationships between reservoir storage, inflow, and release to approximate actual reservoir operations. For the identification of the model parameters, we propose two strategies: (a) a “generalized” parameterization that requires a relatively limited amount of data and (b) direct calibration via multi-objective optimization when more data on historical storage and release are available. We use data from 37 reservoir case studies located in several regions across the globe for developing and testing the model. We further build this reservoir operation model into the MESH (Modélisation Environmentale-Surface et Hydrologie) modeling system, which is a large-scale H-LSM. Our results across the case studies show that the proposed reservoir model with both parameter-identification strategies leads to improved simulation accuracy compared with the other widely used approaches for reservoir operation simulation. We further show the significance of enabling MESH with this reservoir model and discuss the interdependent effects of the simulation accuracy of natural processes and that of reservoir operations on the overall model performance. The reservoir operation model is generic and can be integrated into any H-LSM.