Monireh Faramarzi


2021

DOI bib
Assessment of the cascade of uncertainty in future snow depth projections across watersheds of mountainous, foothill, and plain areas in northern latitudes
Majid Zaremehrjardy, Saman Razavi, Monireh Faramarzi
Journal of Hydrology, Volume 598

• The choice of energy-balance or temperature-index snowmelt modules is often ad-hoc. • Two snowmelt modules under two snow density functions are examined in SWAT model. • Cascade of uncertainty for future projections varies across spatiotemporal scales. • Snow density approach is a major control of snow depth simulation and projection. • Unlike mountains, in plain, snowmelt module uncertainties are scanty but vary in time. Snowmelt is a major driver of the hydrological cycle in cold regions, as such, its accurate representation in hydrological models is key to both regional snow depth and streamflow prediction. The choice of a proper method for snowmelt representation is often improvised; however, a thorough characterization of uncertainty in such process representations particularly in the context of climate change has remained essential. To fill this gap, this study revisits and characterizes performance and uncertainty around the two general approaches to snowmelt representation, namely Energy-Balance Modules (EBMs) and Temperature-Index Modules (TIMs). To account for snow depth simulation and projection, two common Snow Density formulations (SNDs) are implemented that map snow water equivalent (SWE) to snow depth. The major research questions we address are two-fold. First, we examine the dominant controls of uncertainty in snow depth and streamflow simulations across scales and in different climates. Second, we evaluate the cascade of uncertainty of snow depth projections resulting from impact model parameters, greenhouse gas emission scenarios, climate models and their internal variability, and downscaling processes. We enable the Soil and Water Assessment Tool (SWAT) by coupling EBM, TIM, and two SND modules for examination of different snowmelt representation methods, and Analysis of Variance (ANOVA) for uncertainty decomposition and attribution. These analyses are implemented in mountainous, foothill, and plain regions in a large snow-dominated watershed in western Canada. Results show, rather counter-intuitively, that the choice of SND is a major control of performance and uncertainty of snow depth simulation rather than the choice between TIMs and EBMs and of their uncertain parameters. Also, analysis of streamflow simulations suggest that EBMs generally overestimate streamflow on main tributaries. Finally, uncertainty decompositions show that parameter uncertainty related to snowmelt modules dominantly controls uncertainty in future snow depth projections under climate change, particularly in mountainous regions. However, in plain regions, the uncertainty contribution of model parameters becomes more variable with time and less dominant compared with the other sources of uncertainty. Overall, it is shown that the hydro-climatic and topographic conditions of different regions, as well as input data availability, have considerable effect on reproduction of snow depth, snowmelt and resulting streamflow, and on the share of different uncertainty sources when projecting regional snow depth.

2017

DOI bib
An Integrated Modelling System to Predict Hydrological Processes under Climate and Land-Use/Cover Change Scenarios
Babak Farjad, Anil Gupta, Saman Razavi, Monireh Faramarzi, Danielle J. Marceau
Water, Volume 9, Issue 10

This study proposes an integrated modeling system consisting of the physically-based MIKE SHE/MIKE 11 model, a cellular automata model, and general circulation models (GCMs) scenarios to investigate the independent and combined effects of future climate and land-use/land-cover (LULC) changes on the hydrology of a river system. The integrated modelling system is applied to the Elbow River watershed in southern Alberta, Canada in conjunction with extreme GCM scenarios and two LULC change scenarios in the 2020s and 2050s. Results reveal that LULC change substantially modifies the river flow regime in the east sub-catchment, where rapid urbanization is occurring. It is also shown that the change in LULC causes an increase in peak flows in both the 2020s and 2050s. The impacts of climate and LULC change on streamflow are positively correlated in winter and spring, which intensifies their influence and leads to a significant rise in streamflow, and, subsequently, increases the vulnerability of the watershed to spring floods. This study highlights the importance of using an integrated modeling approach to investigate both the independent and combined impacts of climate and LULC changes on the future of hydrology to improve our understanding of how watersheds will respond to climate and LULC changes.