Naoki Mizukami


2022

DOI bib
Evaluating a reservoir parametrisation in the vector-based global routing model mizuRoute (v2.0.1) for Earth System Model coupling
Inne Vanderkelen, Shervan Gharari, Naoki Mizukami, Martyn P. Clark, David M. Lawrence, Sean Swenson, Yadu Pokhrel, Naota Hanasaki, Ann van Griensven, Wim Thiery

Abstract. Human-controlled reservoirs have a large influence on the global water cycle. While global hydrological models use generic parametrisations to model human dam operations, the representation of reservoir regulation is often still lacking in Earth System Models. Here we implement and evaluate a widely used reservoir parametrisation in the global river routing model mizuRoute, which operates on a vector-based river network resolving individual lakes and reservoirs, and which is currently being coupled to an Earth System Model. We develop an approach to determine the downstream area over which to aggregate irrigation water demand per reservoir. The implementation of managed reservoirs is evaluated by comparing to simulations ignoring inland waters, and simulations with reservoirs represented as natural lakes, using (i) local simulations for 26 individual reservoirs driven by observed inflows, and (ii) global-scale simulations driven by runoff from the Community Land Model. The local simulations show a clear added value of the reservoir parametrisation, especially for simulating storage for large reservoirs with a multi-year storage capacity. In the global-scale application, the implementation of reservoirs shows an improvement in outflow and storage compared to the no-reservoir simulation, but compared to the natural lake parametrisation, an overall similar performance is found. This lack of impact could be attributed to biases in simulated river discharge, mainly originating from biases in simulated runoff from the Community Land Model. Finally, the comparison of modelled monthly streamflow indices against observations highlights that the inclusion of dam operations improves the streamflow simulation compared to ignoring lakes and reservoirs. This study overall underlines the need to further develop and test water management parametrisations, as well as to improve runoff simulations for advancing the representation of anthropogenic interference with the terrestrial water cycle in Earth System Models.

DOI bib
New projections of 21st century climate and hydrology for Alaska and Hawaiʻi
Naoki Mizukami, Andrew J. Newman, Jeremy S. Littell, Thomas W. Giambelluca, Andrew W. Wood, E. D. Gutmann, Joseph Hamman, Diana R. Gergel, Bart Nijssen, Martyn P. Clark, Jeffrey R. Arnold
Climate Services, Volume 27

In the United States, high-resolution, century-long, hydroclimate projection datasets have been developed for water resources planning, focusing on the contiguous United States (CONUS) domain. However, there are few statewide hydroclimate projection datasets available for Alaska and Hawaiʻi. The limited information on hydroclimatic change motivates developing hydrologic scenarios from 1950 to 2099 using climate-hydrology impact modeling chains consisting of multiple statistically downscaled climate projections as input to hydrologic model simulations for both states. We adopt an approach similar to the previous CONUS hydrologic assessments where: 1) we select the outputs from ten global climate models (GCM) from the Coupled Model Intercomparison Project Phase 5 with Representative Concentration Pathways 4.5 and 8.5; 2) we perform statistical downscaling to generate climate input data for hydrologic models (12-km grid-spacing for Alaska and 1-km for Hawaiʻi); and 3) we perform process-based hydrologic model simulations. For Alaska, we have advanced the hydrologic model configuration from CONUS by using the full water-energy balance computation, frozen soils and a simple glacier model. The simulations show that robust warming and increases in precipitation produce runoff increases for most of Alaska, with runoff reductions in the currently glacierized areas in Southeast Alaska. For Hawaiʻi, we produce the projections at high resolution (1 km) which highlight high spatial variability of climate variables across the state, and a large spread of runoff across the GCMs is driven by a large precipitation spread across the GCMs. Our new ensemble datasets assist with state-wide climate adaptation and other water planning.

DOI bib
Evaluating a reservoir parametrization in the vector-based global routing model mizuRoute (v2.0.1) for Earth system model coupling
Inne Vanderkelen, Shervan Gharari, Naoki Mizukami, Martyn P. Clark, David M. Lawrence, Sean Swenson, Yadu Pokhrel, Naota Hanasaki, Ann van Griensven, Wim Thiery
Geoscientific Model Development, Volume 15, Issue 10

Abstract. Human-controlled reservoirs have a large influence on the global water cycle. While global hydrological models use generic parameterizations to model dam operations, the representation of reservoir regulation is still lacking in many Earth system models. Here we implement and evaluate a widely used reservoir parametrization in the global river-routing model mizuRoute, which operates on a vector-based river network resolving individual lakes and reservoirs and is currently being coupled to an Earth system model. We develop an approach to determine the downstream area over which to aggregate irrigation water demand per reservoir. The implementation of managed reservoirs is evaluated by comparing them to simulations ignoring inland waters and simulations with reservoirs represented as natural lakes using (i) local simulations for 26 individual reservoirs driven by observed inflows and (ii) global-domain simulations driven by runoff from the Community Land Model. The local simulations show the clear added value of the reservoir parametrization, especially for simulating storage for large reservoirs with a multi-year storage capacity. In the global-domain application, the implementation of reservoirs shows an improvement in outflow and storage compared to the no-reservoir simulation, but a similar performance is found compared to the natural lake parametrization. The limited impact of reservoirs on skill statistics could be attributed to biases in simulated river discharge, mainly originating from biases in simulated runoff from the Community Land Model. Finally, the comparison of modelled monthly streamflow indices against observations highlights that including dam operations improves the streamflow simulation compared to ignoring lakes and reservoirs. This study overall underlines the need to further develop and test runoff simulations and water management parameterizations in order to improve the representation of anthropogenic interference of the terrestrial water cycle in Earth system models.

2021

DOI bib
Flood spatial coherence, triggers, and performance in hydrological simulations: large-sample evaluation of four streamflow-calibrated models
Manuela Irene Brunner, Lieke Melsen, A. W. Wood, Oldřich Rakovec, Naoki Mizukami, Wouter Knoben, Martyn P. Clark
Hydrology and Earth System Sciences, Volume 25, Issue 1

Abstract. Floods cause extensive damage, especially if they affect large regions. Assessments of current, local, and regional flood hazards and their future changes often involve the use of hydrologic models. A reliable hydrologic model ideally reproduces both local flood characteristics and spatial aspects of flooding under current and future climate conditions. However, uncertainties in simulated floods can be considerable and yield unreliable hazard and climate change impact assessments. This study evaluates the extent to which models calibrated according to standard model calibration metrics such as the widely used Kling–Gupta efficiency are able to capture flood spatial coherence and triggering mechanisms. To highlight challenges related to flood simulations, we investigate how flood timing, magnitude, and spatial variability are represented by an ensemble of hydrological models when calibrated on streamflow using the Kling–Gupta efficiency metric, an increasingly common metric of hydrologic model performance also in flood-related studies. Specifically, we compare how four well-known models (the Sacramento Soil Moisture Accounting model, SAC; the Hydrologiska Byråns Vattenbalansavdelning model, HBV; the variable infiltration capacity model, VIC; and the mesoscale hydrologic model, mHM) represent (1) flood characteristics and their spatial patterns and (2) how they translate changes in meteorologic variables that trigger floods into changes in flood magnitudes. Our results show that both the modeling of local and spatial flood characteristics are challenging as models underestimate flood magnitude, and flood timing is not necessarily well captured. They further show that changes in precipitation and temperature are not always well translated to changes in flood flow, which makes local and regional flood hazard assessments even more difficult for future conditions. From a large sample of catchments and with multiple models, we conclude that calibration on the integrated Kling–Gupta metric alone is likely to yield models that have limited reliability in flood hazard assessments, undermining their utility for regional and future change assessments. We underscore that such assessments can be improved by developing flood-focused, multi-objective, and spatial calibration metrics, by improving flood generating process representation through model structure comparisons and by considering uncertainty in precipitation input.

DOI bib
The Abuse of Popular Performance Metrics in Hydrologic Modeling
Martyn P. Clark, Richard M. Vogel, Jonathan R. Lamontagne, Naoki Mizukami, Wouter Knoben, Guoqiang Tang, Shervan Gharari, Jim Freer, Paul H. Whitfield, Kevin Shook, S. Papalexiou
Water Resources Research, Volume 57, Issue 9

The goal of this commentary is to critically evaluate the use of popular performance metrics in hydrologic modeling. We focus on the Nash-Sutcliffe Efficiency (NSE) and the Kling-Gupta Efficiency (KGE) metrics, which are both widely used in hydrologic research and practice around the world. Our specific objectives are: (a) to provide tools that quantify the sampling uncertainty in popular performance metrics; (b) to quantify sampling uncertainty in popular performance metrics across a large sample of catchments; and (c) to prescribe the further research that is, needed to improve the estimation, interpretation, and use of popular performance metrics in hydrologic modeling. Our large-sample analysis demonstrates that there is substantial sampling uncertainty in the NSE and KGE estimators. This occurs because the probability distribution of squared errors between model simulations and observations has heavy tails, meaning that performance metrics can be heavily influenced by just a few data points. Our results highlight obvious (yet ignored) abuses of performance metrics that contaminate the conclusions of many hydrologic modeling studies: It is essential to quantify the sampling uncertainty in performance metrics when justifying the use of a model for a specific purpose and when comparing the performance of competing models.

DOI bib
A Vector‐Based River Routing Model for Earth System Models: Parallelization and Global Applications
Naoki Mizukami, Martyn P. Clark, Shervan Gharari, Erik Kluzek, Ming Pan, Peirong Lin, Hylke E. Beck, Dai Yamazaki
Journal of Advances in Modeling Earth Systems, Volume 13, Issue 6

A vector‐river network explicitly uses realistic geometries of river reaches and catchments for spatial discretization in a river model. This enables improving the accuracy of the physical properties of the modeled river system, compared to a gridded river network that has been used in Earth System Models. With a finer‐scale river network, resolving smaller‐scale river reaches, there is a need for efficient methods to route streamflow and its constituents throughout the river network. The purpose of this study is twofold: (1) develop a new method to decompose river networks into hydrologically independent tributary domains, where routing computations can be performed in parallel; and (2) perform global river routing simulations with two global river networks, with different scales, to examine the computational efficiency and the differences in discharge simulations at various temporal scales. The new parallelization method uses a hierarchical decomposition strategy, where each decomposed tributary is further decomposed into many sub‐tributary domains, enabling hybrid parallel computing. This parallelization scheme has excellent computational scaling for the global domain where it is straightforward to distribute computations across many independent river basins. However, parallel computing for a single large basin remains challenging. The global routing experiments show that the scale of the vector‐river network has less impact on the discharge simulations than the runoff input that is generated by the combination of land surface model and meteorological forcing. The scale of vector‐river networks needs to consider the scale of local hydrologic features such as lakes that are to be resolved in the network.

DOI bib
Simulating the Impact of Global Reservoir Expansion on the Present‐Day Climate
Inne Vanderkelen, Nicole Van Lipzig, William J. Sacks, David M. Lawrence, Martyn P. Clark, Naoki Mizukami, Yadu Pokhrel, Wim Thiery
Journal of Geophysical Research: Atmospheres, Volume 126, Issue 16

Reservoir expansion over the last century has largely affected downstream flow characteristics. Yet very little is known about the impacts of reservoir expansion on the climate. Here, we implement reservoir construction in the Community Land Model by enabling dynamical lake area changes, while conserving mass and energy. Transient global lake and reservoir extent are prescribed from the HydroLAKES and Global Reservoir and Dam databases. Land-only simulations covering the 20th century with reservoir expansion enabled, highlight increases in terrestrial water storage and decreases in albedo matching the increase in open water area. The comparison of coupled simulations including and excluding reservoirs shows only limited influence of reservoirs on global temperatures and the surface energy balance, but demonstrates substantial responses locally, in particular where reservoirs make up a large fraction of the grid cell. In those locations, reservoirs dampen the diurnal temperature range by up to −1.5 K (for reservoirs covering >15% of the grid cell), reduce temperature extremes, and moderate the seasonal temperature cycle. This study provides a first step towards a coupled representation of reservoirs in Earth System Models.

2020

DOI bib
Flood hazard and change impact assessments may profit from rethinking model calibration strategies
Manuela Irene Brunner, Lieke Melsen, A. W. Wood, Oldřich Rakovec, Naoki Mizukami, Wouter Knoben, Martyn P. Clark

Abstract. Floods cause large damages, especially if they affect large regions. Assessments of current, local and regional flood hazards and their future changes often involve the use of hydrologic models. However, uncertainties in simulated floods can be considerable and yield unreliable hazard and climate change impact assessments. A reliable hydrologic model ideally reproduces both local flood characteristics and spatial aspects of flooding, which is, however, not guaranteed especially when using standard model calibration metrics. In this paper we investigate how flood timing, magnitude and spatial variability are represented by an ensemble of hydrological models when calibrated on streamflow using the Kling–Gupta efficiency metric, an increasingly common metric of hydrologic model performance. We compare how four well-known models (SAC, HBV, VIC, and mHM) represent (1) flood characteristics and their spatial patterns; and (2) how they translate changes in meteorologic variables that trigger floods into changes in flood magnitudes. Our results show that both the modeling of local and spatial flood characteristics is challenging. They further show that changes in precipitation and temperature are not necessarily well translated to changes in flood flow, which makes local and regional flood hazard assessments even more difficult for future conditions. We conclude that models calibrated on integrated metrics such as the Kling–Gupta efficiency alone have limited reliability in flood hazard assessments, in particular in regional and future assessments, and suggest the development of alternative process-based and spatial evaluation metrics.

DOI bib
Flexible vector-based spatial configurations in land models
Shervan Gharari, Martyn P. Clark, Naoki Mizukami, Wouter Knoben, Jefferson S. Wong, Alain Pietroniro

Abstract. Land models are increasingly used in terrestrial hydrology due to their process-oriented representation of water and energy fluxes. Land models can be set up at a range of spatial configurations, often ranging from grid sizes of 0.02 to 2 degrees (approximately 2 to 200 km) and applied at sub-daily temporal resolutions for simulation of energy fluxes. A priori specification of the grid size of the land models typically is derived from forcing resolutions, modeling objectives, available geo-spatial data and computational resources. Typically, the choice of model configuration and grid size is based on modeling convenience and is rarely examined for adequate physical representation in the context of modeling. The variability of the inputs and parameters, forcings, soil types, and vegetation covers, are masked or aggregated based on the a priori chosen grid size. In this study, we propose an alternative to directly set up a land model based on the concept of Group Response Unit (GRU). Each GRU is a unique combination of land cover, soil type, and other desired geographical features that has hydrological significance, such as elevation zone, slope, and aspect. Computational units are defined as GRUs that are forced at a specific forcing resolution; therefore, each computational unit has a unique combination of specific geo-spatial data and forcings. We set up the Variable Infiltration Capacity (VIC) model, based on the GRU concept (VIC-GRU). Utilizing this model setup and its advantages we try to answer the following questions: (1) how well a model configuration simulates an output variable, such as streamflow, for range of computational units, (2) how well a model configuration with fewer computational units, coarser forcing resolution and less geo-spatial information, reproduces a model set up with more computational units, finer forcing resolution and more geo-spatial information, and finally (3) how uncertain the model structure and parameters are for the land model. Our results, although case dependent, show that the models may similarly reproduce output with a lower number of computational units in the context of modeling (streamflow for example). Our results also show that a model configuration with a lower number of computational units may reproduce the simulations from a model configuration with more computational units. Similarly, this can assist faster parameter identification and model diagnostic suites, such as sensitivity and uncertainty, on a less computationally expensive model setup. Finally, we encourage the land model community to adopt flexible approaches that will provide a better understanding of accuracy-performance tradeoff in land models.

2019

DOI bib
How Do Modeling Decisions Affect the Spread Among Hydrologic Climate Change Projections? Exploring a Large Ensemble of Simulations Across a Diversity of Hydroclimates
O. Chegwidden, Bart Nijssen, David E. Rupp, Jeffrey R. Arnold, Martyn P. Clark, Joseph Hamman, Shih‐Chieh Kao, Yixin Mao, Naoki Mizukami, Philip W. Mote, Ming Pan, Erik Pytlak, Mu Xiao
Earth's Future, Volume 7, Issue 6

Methodological choices can have strong effects on projections of climate change impacts on hydrology. In this study, we investigate the ways in which four different steps in the modeling chain influence the spread in projected changes of different aspects of hydrology. To form the basis of these analyses, we constructed an ensemble of 160 simulations from permutations of two Representative Concentration Pathways, 10 global climate models, two downscaling methods, and four hydrologic model implementations. The study is situated in the Pacific Northwest of North America, which has relevance to a diverse, multinational cast of stakeholders. We analyze the effects of each modeling decision on changes in gridded hydrologic variables of snow water equivalent and runoff, as well as streamflow at point locations. Results show that the choice of representative concentration pathway or global climate model is the driving contributor to the spread in annual streamflow volume and timing. On the other hand, hydrologic model implementation explains most of the spread in changes in low flows. Finally, by grouping the results by climate region the results have the potential to be generalized beyond the Pacific Northwest. Future hydrologic impact assessments can use these results to better tailor their modeling efforts.

DOI bib
Improving the Representation of Subsurface Water Movement in Land Models
Shervan Gharari, Martyn P. Clark, Naoki Mizukami, Jefferson S. Wong, Alain Pietroniro, H. S. Wheater
Journal of Hydrometeorology, Volume 20, Issue 12

Abstract Land models are increasingly used and preferred in terrestrial hydrological prediction applications. One reason for selecting land models over simpler models is that their physically based backbone enables wider application under different conditions. This study evaluates the temporal variability in streamflow simulations in land models. Specifically, we evaluate how the subsurface structure and model parameters control the partitioning of water into different flow paths and the temporal variability in streamflow. Moreover, we use a suite of model diagnostics, typically not used in the land modeling community to clarify model weaknesses and identify a path toward model improvement. Our analyses show that the typical land model structure, and their functions for moisture movement between soil layers (an approximation of Richards equation), has a distinctive signature where flashy runoff is superimposed on slow recessions. This hampers the application of land models in simulating flashier basins and headwater catchments where floods are generated. We demonstrate the added value of the preferential flow in the model simulation by including macropores in both a toy model and the Variable Infiltration Capacity model. We argue that including preferential flow in land models is essential to enable their use for multiple applications across a myriad of temporal and spatial scales.

DOI bib
Subjective modeling decisions can significantly impact the simulation of flood and drought events
Lieke Melsen, Adriaan J. Teuling, P.J.J.F. Torfs, Massimiliano Zappa, Naoki Mizukami, Pablo Mendoza, Martyn P. Clark, R. Uijlenhoet
Journal of Hydrology, Volume 568

It is generally acknowledged in the environmental sciences that the choice of a computational model impacts the research results. In this study of a flood and drought event in the Swiss Thur basin, we show that modeling decisions during the model configuration, beyond the model choice, also impact the model results. In our carefully designed experiment we investigated four modeling decisions in ten nested basins: the spatial resolution of the model, the spatial representation of the forcing data, the calibration period, and the performance metric. The flood characteristics were mainly affected by the performance metric, whereas the drought characteristics were mainly affected by the calibration period. The results could be related to the processes that triggered the particular events studied. The impact of the modeling decisions on the simulations did, however, vary among the investigated sub-basins. In spite of the limitations of this study, our findings have important implications for the understanding and quantification of uncertainty in any hydrological or even environmental model. Modeling decisions during model configuration introduce subjectivity from the modeler. Multiple working hypotheses during model configuration can provide insights on the impact of such subjective modeling decisions.

DOI bib
On the choice of calibration metrics for “high-flow” estimation using hydrologic models
Naoki Mizukami, Oldřich Rakovec, Andrew J. Newman, Martyn P. Clark, A. W. Wood, Hoshin Gupta, Rohini Kumar
Hydrology and Earth System Sciences, Volume 23, Issue 6

Abstract. Calibration is an essential step for improving the accuracy of simulations generated using hydrologic models. A key modeling decision is selecting the performance metric to be optimized. It has been common to use squared error performance metrics, or normalized variants such as Nash–Sutcliffe efficiency (NSE), based on the idea that their squared-error nature will emphasize the estimates of high flows. However, we conclude that NSE-based model calibrations actually result in poor reproduction of high-flow events, such as the annual peak flows that are used for flood frequency estimation. Using three different types of performance metrics, we calibrate two hydrological models at a daily step, the Variable Infiltration Capacity (VIC) model and the mesoscale Hydrologic Model (mHM), and evaluate their ability to simulate high-flow events for 492 basins throughout the contiguous United States. The metrics investigated are (1) NSE, (2) Kling–Gupta efficiency (KGE) and its variants, and (3) annual peak flow bias (APFB), where the latter is an application-specific metric that focuses on annual peak flows. As expected, the APFB metric produces the best annual peak flow estimates; however, performance on other high-flow-related metrics is poor. In contrast, the use of NSE results in annual peak flow estimates that are more than 20 % worse, primarily due to the tendency of NSE to underestimate observed flow variability. On the other hand, the use of KGE results in annual peak flow estimates that are better than from NSE, owing to improved flow time series metrics (mean and variance), with only a slight degradation in performance with respect to other related metrics, particularly when a non-standard weighting of the components of KGE is used. Stochastically generated ensemble simulations based on model residuals show the ability to improve the high-flow metrics, regardless of the deterministic performances. However, we emphasize that improving the fidelity of streamflow dynamics from deterministically calibrated models is still important, as it may improve high-flow metrics (for the right reasons). Overall, this work highlights the need for a deeper understanding of performance metric behavior and design in relation to the desired goals of model calibration.

DOI bib
Diagnostic Evaluation of Large‐Domain Hydrologic Models Calibrated Across the Contiguous United States
Oldřich Rakovec, Naoki Mizukami, Rohini Kumar, Andrew J. Newman, Stephan Thober, Andrew W. Wood, Martyn P. Clark, Luis Samaniego
Journal of Geophysical Research: Atmospheres, Volume 124, Issue 24

This study presents diagnostic evaluation of two large‐domain hydrologic models: the mesoscale Hydrologic Model (mHM) and the Variable Infiltration Capacity (VIC) over the contiguous United States (CONUS). These models have been calibrated using the Multiscale Parameter Regionalization scheme in a joint, multibasin approach using 492 medium‐sized basins across the CONUS yielding spatially distributed model parameter sets. The mHM simulations are used as a performance benchmark to examine performance deficiencies in the VIC model. We find that after calibration to streamflow, VIC generally overestimates the magnitude and temporal variability of evapotranspiration (ET) as compared to mHM as well as the FLUXNET observation‐based ET product, resulting in underestimation of the mean and variability of runoff. We perform a controlled calibration experiment to investigate the effect of varying number of transfer function parameters in mHM and to enable a fair comparison between both models (14 and 48 for mHM vs. 14 for VIC). Results of this experiment show similar behavior of mHM with 14 and 48 parameters. Furthermore, we diagnose the internal functioning of the VIC model by looking at the relationship of the evaporative fraction versus the degree of soil saturation and compare it with that of the mHM model, which has a different model structure, a prescribed nonlinear relationship between these variables and exhibits better model skill than VIC. Despite these limitations, the VIC‐based CONUS‐wide calibration constrained against streamflow exhibits better ET skill as compared to two preexisting independent VIC studies.