Nick Rutter


2023

DOI bib
Environmental controls of non-growing season carbon dioxide fluxes in boreal and tundra environments
Alex Mavrovic, Oliver Sonnentag, Juha Lemmetyinen, Carolina Voigt, Nick Rutter, P. Mann, Jean‐Daniel Sylvain, Alexandre Roy

Abstract. The carbon cycle in Arctic-boreal regions (ABR) is an important component of the planetary carbon balance, with growing concerns about the consequences of ABR warming on the global climate system. The greatest uncertainty in annual carbon dioxide (CO2) budgets exists during the non-growing season, primarily due to challenges with data availability and limited spatial coverage in measurements. The goal of this study was to determine the main environmental controls of non-growing season CO2 fluxes in ABR over a latitudinal gradient (45° N to 69° N) featuring four different ecosystem types: closed-crown coniferous boreal forest, open-crown coniferous boreal forest, erect-shrub tundra, and prostrate-shrub tundra. CO2 fluxes calculated using a snowpack diffusion gradient method (n = 560) ranged from 0 to 1.05 gC m2 day-1. To assess the dominant environmental controls governing CO2 fluxes, a Random Forest machine learning approach was used. We identified that soil temperature as the main control of non-growing season CO2 fluxes with 68 % of relative model importance, except when soil liquid water occurred during zero degree Celsius curtain conditions (Tsoil ≈ 0 °C and liquid water coexists with ice in soil pores). Under zero-curtain conditions, liquid water content became the main control of CO2 fluxes with 87 % of relative model importance. We observed exponential regressions between CO2 fluxes and soil temperature (RMSE = 0.024 gC m-2 day-1) in frozen soils, as well as liquid water content (RMSE = 0.137 gC m-2 day-1) in zero-curtain conditions. This study is showing the role of several variables on the spatio-temporal variability of CO2 fluxes in ABR during the non-growing season and highlight that the complex vegetation-snow-soil interactions in northern environments must be considered when studying what drives the spatial variability of soil carbon emission during the non-growing season.

2022

DOI bib
Characterizing tundra snow sub-pixel variability to improve brightness temperature estimation in satellite SWE retrievals
Julien Meloche, Alexandre Langlois, Nick Rutter, A. Royer, J. M. King, Branden Walker, Philip Marsh, Evan J. Wilcox
The Cryosphere, Volume 16, Issue 1

Abstract. Topography and vegetation play a major role in sub-pixel variability of Arctic snowpack properties but are not considered in current passive microwave (PMW) satellite SWE retrievals. Simulation of sub-pixel variability of snow properties is also problematic when downscaling snow and climate models. In this study, we simplified observed variability of snowpack properties (depth, density, microstructure) in a two-layer model with mean values and distributions of two multi-year tundra dataset so they could be incorporated in SWE retrieval schemes. Spatial variation of snow depth was parameterized by a log-normal distribution with mean (μsd) values and coefficients of variation (CVsd). Snow depth variability (CVsd) was found to increase as a function of the area measured by a remotely piloted aircraft system (RPAS). Distributions of snow specific surface area (SSA) and density were found for the wind slab (WS) and depth hoar (DH) layers. The mean depth hoar fraction (DHF) was found to be higher in Trail Valley Creek (TVC) than in Cambridge Bay (CB), where TVC is at a lower latitude with a subarctic shrub tundra compared to CB, which is a graminoid tundra. DHFs were fitted with a Gaussian process and predicted from snow depth. Simulations of brightness temperatures using the Snow Microwave Radiative Transfer (SMRT) model incorporating snow depth and DHF variation were evaluated with measurements from the Special Sensor Microwave/Imager and Sounder (SSMIS) sensor. Variation in snow depth (CVsd) is proposed as an effective parameter to account for sub-pixel variability in PMW emission, improving simulation by 8 K. SMRT simulations using a CVsd of 0.9 best matched CVsd observations from spatial datasets for areas > 3 km2, which is comparable to the 3.125 km pixel size of the Equal-Area Scalable Earth (EASE)-Grid 2.0 enhanced resolution at 37 GHz.

DOI bib
Impact of measured and simulated tundra snowpack properties on heat transfer
Victoria R. Dutch, Nick Rutter, Leanne Wake, Melody Sandells, Chris Derksen, Branden Walker, Gabriel Gosselin, Oliver Sonnentag, Richard Essery, Richard Kelly, Phillip Marsh, Joshua King, Julia Boike
The Cryosphere, Volume 16, Issue 10

Abstract. Snowpack microstructure controls the transfer of heat to, as well as the temperature of, the underlying soils. In situ measurements of snow and soil properties from four field campaigns during two winters (March and November 2018, January and March 2019) were compared to an ensemble of CLM5.0 (Community Land Model) simulations, at Trail Valley Creek, Northwest Territories, Canada. Snow micropenetrometer profiles allowed for snowpack density and thermal conductivity to be derived at higher vertical resolution (1.25 mm) and a larger sample size (n=1050) compared to traditional snowpit observations (3 cm vertical resolution; n=115). Comparing measurements with simulations shows CLM overestimated snow thermal conductivity by a factor of 3, leading to a cold bias in wintertime soil temperatures (RMSE=5.8 ∘C). Two different approaches were taken to reduce this bias: alternative parameterisations of snow thermal conductivity and the application of a correction factor. All the evaluated parameterisations of snow thermal conductivity improved simulations of wintertime soil temperatures, with that of Sturm et al. (1997) having the greatest impact (RMSE=2.5 ∘C). The required correction factor is strongly related to snow depth (R2=0.77,RMSE=0.066) and thus differs between the two snow seasons, limiting the applicability of such an approach. Improving simulated snow properties and the corresponding heat flux is important, as wintertime soil temperatures are an important control on subnivean soil respiration and hence impact Arctic winter carbon fluxes and budgets.

2021

DOI bib
Impact of measured and simulated tundra snowpack properties on heat transfer
Victoria R. Dutch, Nick Rutter, Leanne Wake, Melody Sandells, Chris Derksen, Branden Walker, Gabriel Gosselin, Oliver Sonnentag, Richard Essery, Richard Kelly, Philip Marsh, Joshua King

Abstract. Snowpack microstructure controls the transfer of heat to, and the temperature of, the underlying soils. In situ measurements of snow and soil properties from four field campaigns during two different winters (March and November 2018, January and March 2019) were compared to an ensemble of CLM5.0 (Community Land Model) simulations, at Trail Valley Creek, Northwest Territories, Canada. Snow MicroPenetrometer profiles allowed snowpack density and thermal conductivity to be derived at higher vertical resolution (1.25 mm) and a larger sample size (n = 1050) compared to traditional snowpit observations (3 cm vertical resolution; n = 115). Comparing measurements with simulations shows CLM overestimated snow thermal conductivity by a factor of 3, leading to a cold bias in wintertime soil temperatures (RMSE = 5.8 °C). Bias-correction of the simulated thermal conductivity (relative to field measurements) improved simulated soil temperatures (RMSE = 2.1 °C). Multiple linear regression shows the required correction factor is strongly related to snow depth (R2 = 0.77, RMSE = 0.066) particularly early in the winter. Furthermore, CLM simulations did not adequately represent the observed high proportions of depth hoar. Addressing uncertainty in simulated snow properties and the corresponding heat flux is important, as wintertime soil temperatures act as a control on subnivean soil respiration, and hence impact Arctic winter carbon fluxes and budgets.

DOI bib
Review Article: Global Monitoring of Snow Water Equivalent using High Frequency Radar Remote Sensing
Leung Tsang, M. T. Durand, Chris Derksen, A. P. Barros, Dong-In Kang, Hans Lievens, Hans‐Peter Marshall, Jiyue Zhu, Joel T. Johnson, Joshua King, Juha Lemmetyinen, Melody Sandells, Nick Rutter, Paul Siqueira, A. W. Nolin, Batu Osmanoglu, Carrie Vuyovich, Edward Kim, Drew Taylor, Ioanna Merkouriadi, Ludovic Brucker, Mahdi Navari, Marie Dumont, Richard Kelly, Rhae Sung Kim, Tien-Hao Liao, Xiaolan Xu

Abstract. Seasonal snow cover is the largest single component of the cryosphere in areal extent, covering an average of 46 million square km of Earth's surface (31 % of the land area) each year, and is thus an important expression of and driver of the Earth’s climate. In recent years, Northern Hemisphere spring snow cover has been declining at about the same rate (~ −13 %/decade) as Arctic summer sea ice. More than one-sixth of the world’s population relies on seasonal snowpack and glaciers for a water supply that is likely to decrease this century. Snow is also a critical component of Earth’s cold regions' ecosystems, in which wildlife, vegetation, and snow are strongly interconnected. Snow water equivalent (SWE) describes the quantity of snow stored on the land surface and is of fundamental importance to water, energy, and geochemical cycles. Quality global SWE estimates are lacking. Given the vast seasonal extent combined with the spatially variable nature of snow distribution at regional and local scales, surface observations will not be able to provide sufficient SWE information. Satellite observations presently cannot provide SWE information at the spatial and temporal resolutions required to address science and high socio-economic value applications such as water resource management and streamflow forecasting. In this paper, we review the potential contribution of X- and Ku-Band Synthetic Aperture Radar (SAR) for global monitoring of SWE. We describe radar interactions with snow-covered landscapes, characterization of snowpack properties using radar measurements, and refinement of retrieval algorithms via synergy with other microwave remote sensing approaches. SAR can image the surface during both day and night regardless of cloud cover, allowing high-frequency revisit at high spatial resolution as demonstrated by missions such as Sentinel-1. The physical basis for estimating SWE from X- and Ku-band radar measurements at local scales is volume scattering by millimetre-scale snow grains. Inference of global snow properties from SAR requires an interdisciplinary approach based on field observations of snow microstructure, physical snow modelling, electromagnetic theory, and retrieval strategies over a range of scales. New field measurement capabilities have enabled significant advances in understanding snow microstructure such as grain size, densities, and layering. We describe radar interactions with snow-covered landscapes, the characterization of snowpack properties using radar measurements, and the refinement of retrieval algorithms via synergy with other microwave remote sensing approaches. This review serves to inform the broader snow research, monitoring, and applications communities on progress made in recent decades, and sets the stage for a new era in SWE remote-sensing from SAR measurements.

DOI bib
Effect of Forest Canopy Structure on Wintertime Land Surface Albedo: Evaluating CLM5 Simulations With In‐Situ Measurements
Johanna Malle, Nick Rutter, Clare Webster, Giulia Mazzotti, Leanne Wake, Tobias Jonas
Journal of Geophysical Research: Atmospheres, Volume 126, Issue 9

Land Surface Albedo (LSA) of forested environments continues to be a source of uncertainty in land surface modeling, especially across seasonally snow covered domains. Assessment and improvement of global scale model performance has been hampered by the contrasting spatial scales of model resolution and in‐situ LSA measurements. In this study, point‐scale simulations of the Community Land Model 5.0 (CLM5) were evaluated across a large range of forest structures and solar angles at two climatically different locations. LSA measurements, using an uncrewed aerial vehicle with up and down‐looking shortwave radiation sensors, showed canopy structural shading of the snow surface exerted a primary control on LSA. Diurnal patterns of measured LSA revealed strong effects of both azimuth and zenith angles, neither of which were adequately represented in simulations. In sparse forest environments, LSA were overestimated by up to 66%. Further analysis revealed a lack of correlation between Plant Area Index (PAI), the primary canopy descriptor in CLM5, and measured LSA. Instead, measured LSA showed considerable correlation with the fraction of snow visible in the sensor's field of view, a correlation which increased further when only considering the sunlit fraction of visible snow. The use of effective PAI values as a simple first‐order correction for the discrepancy between measured and simulated LSA in sparse forest environments substantially improved model results (64%–76% RMSE reduction). However, the large biases suggest the need for a more generic solution, for example, by introducing a canopy metric that represents canopy gap fraction rather than assuming a spatially homogeneous canopy.

2019

DOI bib
Effect of snow microstructure variability on Ku-band radar snow water equivalent retrievals
Nick Rutter, Melody Sandells, Chris Derksen, Joshua King, Peter Toose, Leanne Wake, Tom Watts, Richard Essery, Alexandre Roy, A. Royer, Philip Marsh, C. F. Larsen, Matthew Sturm
The Cryosphere, Volume 13, Issue 11

Abstract. Spatial variability in snowpack properties negatively impacts our capacity to make direct measurements of snow water equivalent (SWE) using satellites. A comprehensive data set of snow microstructure (94 profiles at 36 sites) and snow layer thickness (9000 vertical profiles across nine trenches) collected over two winters at Trail Valley Creek, NWT, Canada, was applied in synthetic radiative transfer experiments. This allowed for robust assessment of the impact of estimation accuracy of unknown snow microstructural characteristics on the viability of SWE retrievals. Depth hoar layer thickness varied over the shortest horizontal distances, controlled by subnivean vegetation and topography, while variability in total snowpack thickness approximated that of wind slab layers. Mean horizontal correlation lengths of layer thickness were less than a metre for all layers. Depth hoar was consistently ∼30 % of total depth, and with increasing total depth the proportion of wind slab increased at the expense of the decreasing surface snow layer. Distinct differences were evident between distributions of layer properties; a single median value represented density and specific surface area (SSA) of each layer well. Spatial variability in microstructure of depth hoar layers dominated SWE retrieval errors. A depth hoar SSA estimate of around 7 % under the median value was needed to accurately retrieve SWE. In shallow snowpacks <0.6 m, depth hoar SSA estimates of ±5 %–10 % around the optimal retrieval SSA allowed SWE retrievals within a tolerance of ±30 mm. Where snowpacks were deeper than ∼30 cm, accurate values of representative SSA for depth hoar became critical as retrieval errors were exceeded if the median depth hoar SSA was applied.

2018

DOI bib
The influence of snow microstructure on dual-frequency radar measurements in a tundra environment
Joshua King, Chris Derksen, Peter Toose, Alexandre Langlois, C. F. Larsen, Juha Lemmetyinen, P. Marsh, Benoît Montpetit, Alexandre Roy, Nick Rutter, Matthew Sturm
Remote Sensing of Environment, Volume 215

Abstract Recent advancement in the understanding of snow-microwave interactions has helped to isolate the considerable potential for radar-based retrieval of snow water equivalent (SWE). There are however, few datasets available to address spatial uncertainties, such as the influence of snow microstructure, at scales relevant to space-borne application. In this study we introduce measurements from SnowSAR, an airborne, dual-frequency (9.6 and 17.2 GHz) synthetic aperture radar (SAR), to evaluate high resolution (10 m) backscatter within a snow-covered tundra basin. Coincident in situ surveys at two sites characterize a generally thin snowpack (50 cm) interspersed with deeper drift features. Structure of the snowpack is found to be predominantly wind slab (65%) with smaller proportions of depth hoar underlain (35%). Objective estimates of snow microstructure (exponential correlation length; lex), show the slab layers to be 2.8 times smaller than the basal depth hoar. In situ measurements are used to parametrize the Microwave Emission Model of Layered Snowpacks (MEMLS3&a) and compare against collocated SnowSAR backscatter. The evaluation shows a scaling factor (ϕ) between 1.37 and 1.08, when applied to input of lex, minimizes MEMLS root mean squared error to