Pieter J. K. Aukes


2021

DOI bib
<scp>Size‐based</scp> characterization of freshwater dissolved organic matter finds similarities within a waterbody type across different Canadian ecozones
Pieter J. K. Aukes, Sherry L. Schiff, Jason J. Venkiteswaran, Richard J. Elgood, John Spoelstra
Limnology and Oceanography Letters, Volume 6, Issue 2

Dissolved organic matter (DOM) represents a mixture of organic molecules that vary due to different source materials and degree of processing. Characterizing how DOM composition evolves along the aquatic continuum can be difficult. Using a size‐exclusion chromatography technique (liquid chromatography‐organic carbon detection [LC‐OCD]), we assessed the variability in DOM composition from both surface and groundwaters across a number of Canadian ecozones (mean annual temperature spanning −10°C to +6°C). A wide range in DOM concentration was found from 0.2 to 120 mg C L−1. Proportions of different size‐based groupings across ecozones were variable, yet similarities between specific waterbody types, regardless of location, suggest commonality in the processes dictating DOM composition. A principal component analysis identified 70% of the variation in LC‐OCD derived DOM compositions could be explained by the waterbody type. We find that DOM composition within a specific waterbody type is similar regardless of the differences in climate or surrounding vegetation where the sample originated from.

DOI bib
Composition Wheels: Visualizing dissolved organic matter using common composition metrics across a variety of Canadian ecozones
Pieter J. K. Aukes, Sherry L. Schiff
PLOS ONE, Volume 16, Issue 7

Dissolved organic matter (DOM) is a ubiquitous component of aquatic systems, impacting aquatic health and drinking water quality. These impacts depend on the mixture of organic molecules that comprise DOM. Changing climates are altering both the amount and character of DOM being transported from the terrestrial system into adjacent surface waters, yet DOM composition is not monitored as often as overall concentration. Many DOM characterization methods exist, confounding comparison of DOM composition across different studies. The objective of this research is to determine which parameters in a suite of relatively simple and common DOM characterization techniques explain the most variability in DOM composition from surface and groundwater sites. Further, we create a simple visualization tool to easily compare compositional differences in DOM. A large number of water samples (n = 250) was analyzed from six Canadian ecozones for DOM concentration, ultraviolet-visible light absorbance, molecular size, and elemental ratios. Principal component analyses was used to identify quasi-independent DOM compositional parameters that explained the highest variability in the dataset: spectral slope, specific-UV absorbance at 255nm, humic substances fraction, and dissolved organic carbon to dissolved organic nitrogen ratio. A ‘Composition Wheel’ was created by plotting these four parameters as a polygon. Our results find similarities in DOM composition irrespective of site differences in vegetation and climate. Further, two main end-member Composition Wheel shapes were revealed that correspond to DOM in organic-rich groundwaters and DOM influenced by photodegradation. The Composition Wheel approach uses easily visualized differences in polygon shape to quantify how DOM evolves by natural processes along the aquatic continuum and to track sources and degradation of DOM.

2020

DOI bib
Size-Based Characterization of Freshwater Dissolved Organic Matter finds Similarities within a Water Body Type across Different Canadian Ecozones
Pieter J. K. Aukes, Sherry L. Schiff, Jason J. Venkiteswaran, Richard J. Elgood, John Spoelstra

Dissolved Organic Matter (DOM) represents a mixture of organic molecules that vary due to different source materials and degree of processing. Characterizing how DOM composition evolves along the aquatic continuum can be difficult. Using a size-exclusion chromatography technique (LC-OCD), we assessed the variability in DOM composition from both surface and groundwaters across a number of Canadian ecozones (mean annual temperature spanning -10 to +6 C). A wide range in DOM concentration was found from 0.2 to 120 mg C/L. Proportions of different size-based groupings across ecozones were variable, yet similarities between specific water-body types, regardless of location, suggest commonality in the processes dictating the evolution of DOM composition. A principal-component analysis identified 70% of the variation in LC-OCD derived DOM compositions could be explained by the water-body type. We find that water-body type has a greater influence on DOM composition than differences in climate or surrounding vegetation.