Shawn McKenzie


2021

DOI bib
Sensitivity of vegetation dynamics to climate variability in a forest-steppe transition ecozone, north-eastern Inner Mongolia, China
Guangyong You, Bo Liu, Changxin Zou, Haidong Li, Shawn McKenzie, Yaqian He, Jixi Gao, Xiru Jia, M. Altaf Arain, Shusen Wang, Zhi Wang, Xinxin Xia, Wei Xu
Ecological Indicators, Volume 120

Abstract Climate change and land use management were competing explanations for vegetation dynamics in cold and semi-arid region of north-eastern Inner Mongolia, China. In order to reveal the role of human disturbance and clarify the regional climate-vegetation relationship, long-term (1982–2013) datasets of climate variables and vegetation dynamics in a forest-steppe transition zone of north-eastern Inner Mongolia, China were collected. Partial correlation analyses, principal components regression (PCR), and residual analyses were conducted to reveal the vegetation sensitivities to different climate variables and the impact of anthropogenic activities on climate-vegetation relationship. The results showed that. (1) Annual mean air temperature (TMP) significantly increased at a linear slope of 0.08 °C per decade, annual precipitation (PRE) had an insignificantly linear slope of −16.42 mm per decade (p = 0.15). The average Normalized Difference Vegetation Index (NDVI) had a significantly negative trend over the past decades. A change point around the year 1998, coincided with the occurrence of an intense global El Nino event was also identified. (2) Regional climate change can be represented by changes in temperature, humidity and radiation. NDVI in the steppes display high sensitivity to moisture availability. Whereas, forests was influenced by the warmth index (WMI), accumulation of monthly temperature above a threshold of 5 °C. Partial correlation analyses showed that pixels of positive correlation with PRE (controlling TMP) overlap with the pixels of high partial correlation with minimum temperature (controlling maximum temperature), which suggests a hidden link between minimum temperature and PRE in this region. (3) The spatial distribution of significantly decreased NDVI overlap with cropland expansion, as well as the low residual square (R2) from PCR analysis. The NDVI decline in these expanded croplands suggests human disturbance on vegetation dynamics. Following climate warming, NDVI of forested land displayed positive trend. Whereas, most of steppe displayed negative trend, possibly resulting from combined effects of climate drying and human disturbance. We conclude that the regional climate change can be characterized as warming and drying. Steppe areas were sensitive to humidity changes while forested land was mostly influenced by growing season warmth. Overall, the regional NDVI displayed significantly negative trend over the past decades. Beyond climate drying, cropland expansion in the transition area between grassland and forested land is also an important driver for decreased NDVI. Further studies on the ecological and hydrological consequences of crop land expansion is necessary.

DOI bib
The Impact of Variable Retention Harvesting on Growth and Carbon Sequestration of a Red Pine (Pinus resinosa Ait.) Plantation Forest in Southern Ontario, Canada
Jessica Zugic, Michael F. J. Pisaric, Shawn McKenzie, William C. Parker, Ken A. Elliott, M. Altaf Arain
Frontiers in Forests and Global Change, Volume 4

As atmospheric carbon dioxide concentrations continue to rise and global temperatures increase, there is growing concern about the sustainability, health, and carbon sequestration potential of forest ecosystems. Variable retention harvesting (VRH) has been suggested to be a potential method to increase forest biodiversity, growth, and carbon (C) sequestration. A field trial was established in an 88-year-old red pine ( Pinus resinosa Ait.) plantation in southern Ontario, Canada, using a completely randomized design to examine the response of tree productivity and other forest values to five harvesting treatments: 33% aggregate retention (33A), 55% aggregate retention (55A), 33% dispersed retention (33D), and 55% dispersed retention (55D) in comparison to an unharvested control (CN). In this study, we explored the impacts of VRH on aboveground stem radial growth and annual C increment. Standard dendrochronological methods and allometric equations were used to quantify tree- and stand-level treatment effects during a five-year pre-harvest (2009–2013) and post-harvest (2014–2018) period. Tree-level growth and C increment were increased by the dispersed retention pattern regardless of retention level. At the stand level, the total C increment was highest at greater retention levels and did not vary with retention pattern. These results suggest that the choice of retention level and pattern can have a large influence on management objectives as they relate to timber production, climate change adaptation, and/or climate change mitigation.

2020

DOI bib
Comparison of tree-ring growth and eddy covariance-based ecosystem productivities in three different-aged pine plantation forests
Shawn McKenzie, Michael F. J. Pisaric, M. Altaf Arain
Trees, Volume 35, Issue 2

Forests play a major role in the global carbon cycle. Understanding the dynamics of the forest carbon cycle and its driving factors is challenging. This study utilized dendrochronology and long-term (2003–2017) eddy covariance (EC) carbon flux data to investigate the relationships between tree growth and gross and net ecosystem productivities (GEPEC and NEPEC) in different-age (15-, 42- and 78-year old) pine plantation forests in the Great Lakes region in eastern North America. Tree growth in these different-age pine forests was significantly (p < 0.05) correlated with observed annual GEPEC values, while coherence between tree growth and NEPEC was relatively poor. Current-year and 1-year lagged ring-width chronologies and climate variables, including spring (April–May) temperature (TSPR) and Standardized Potential Evapotranspiration Index (SPEISUM) over the summer months (June–August) were used to test ten different linear regression models to simulate tree-ring-based GEP (GEPTR) values at all three sites. This analysis showed that current-year growth was the best predictor of GEPTR at all three sites, when compared to observed GEPEC, except during drought years, when GEPTR was underestimated. Current-year tree growth models were then used to reconstruct GEPTR over the life span of each stand. These reconstructions showed low GEPTR values from 1978 to 1988 and from 2002 to 2007. Low GEPTR in late 1970s occurred in response to below average temperatures when there were no major drought periods, while low GEPTR in early 2000s occurred following drought-like conditions in 2002. However, in recent years relatively higher GEPTR was observed at all three different-age forest sites. This interdisciplinary study will help to improve our understanding of carbon exchanges and the key environmental controls and associated uncertainties on tree growth in these different-age plantation stands in eastern North America. It will also help to determine how these forests may respond to climate change.

DOI bib
Future shift in winter streamflow modulated by the internal variability of climate in southern Ontario
Olivier Champagne, M. Altaf Arain, Martin Leduc, Paulin Coulibaly, Shawn McKenzie
Hydrology and Earth System Sciences, Volume 24, Issue 6

Abstract. Fluvial systems in southern Ontario are regularly affected by widespread early-spring flood events primarily caused by rain-on-snow events. Recent studies have shown an increase in winter floods in this region due to increasing winter temperature and precipitation. Streamflow simulations are associated with uncertainties mainly due to the different scenarios of greenhouse gas emissions, global climate models (GCMs) or the choice of the hydrological model. The internal variability of climate, defined as the chaotic variability of atmospheric circulation due to natural internal processes within the climate system, is also a source of uncertainties to consider. Uncertainties of internal variability can be assessed using hydrological models fed by downscaled data of a global climate model large ensemble (GCM-LE), but GCM outputs have too coarse of a scale to be used in hydrological modeling. The Canadian Regional Climate Model Large Ensemble (CRCM5-LE), a 50-member ensemble downscaled from the Canadian Earth System Model version 2 Large Ensemble (CanESM2-LE), was developed to simulate local climate variability over northeastern North America under different future climate scenarios. In this study, CRCM5-LE temperature and precipitation projections under an RCP8.5 scenario were used as input in the Precipitation Runoff Modeling System (PRMS) to simulate streamflow at a near-future horizon (2026–2055) for four watersheds in southern Ontario. To investigate the role of the internal variability of climate in the modulation of streamflow, the 50 members were first grouped in classes of similar projected change in January–February streamflow and temperature and precipitation between 1961–1990 and 2026–2055. Then, the regional change in geopotential height (Z500) from CanESM2-LE was calculated for each class. Model simulations showed an average January–February increase in streamflow of 18 % (±8.7) in Big Creek, 30.5 % (±10.8) in Grand River, 29.8 % (±10.4) in Thames River and 31.2 % (±13.3) in Credit River. A total of 14 % of all ensemble members projected positive Z500 anomalies in North America's eastern coast enhancing rain, snowmelt and streamflow volume in January–February. For these members the increase of streamflow is expected to be as high as 31.6 % (±8.1) in Big Creek, 48.3 % (±11.1) in Grand River, 47 % (±9.6) in Thames River and 53.7 % (±15) in Credit River. Conversely, 14 % of the ensemble projected negative Z500 anomalies in North America's eastern coast and were associated with a much lower increase in streamflow: 8.3 % (±7.8) in Big Creek, 18.8 % (±5.8) in Grand River, 17.8 % (±6.4) in Thames River and 18.6 % (±6.5) in Credit River. These results provide important information to researchers, managers, policymakers and society about the expected ranges of increase in winter streamflow in a highly populated region of Canada, and they will help to explain how the internal variability of climate is expected to modulate the future streamflow in this region.

2019

DOI bib
Trends of actual and potential evapotranspiration based on Bouchet’s complementary concept in a cold and arid steppe site of Northeastern Asia
Guangyong You, M. Altaf Arain, Shusen Wang, Naifeng Lin, Dan Wu, Shawn McKenzie, Changxin Zou, Bo Liu, Xiaohua Zhang, Jixi Gao
Agricultural and Forest Meteorology, Volume 279

Abstract Due to complex natural water flux processes and the ambiguous explanation of Bouchet’s complementary theory, site-level investigations on evapotranspiration (ET) and related climate variables assist in understanding the regional hydrological response to climate change. In this study, site specific empirical parameters were incorporated in the Bouchet’s complementary relationship (CR) and potential and actual ET were estimated by CR method and subsequently validated by 6 years of ground-based vapor flux observations. Time series analysis, correlation analysis and principal regression analysis were conducted to reveal the characteristics of climate change and the controlling factor(s) of the variations of potential ET and actual ET. The results show that this region is exhibiting a combined warming and drying trend over the past decades with two change points that occurred in 1993 and in 2000. Potential ET was predominantly influenced by temperature and vapor pressure deficit, while actual ET was mostly influenced by vegetation activity. Potential ET was found to be increasing concurrently with declining actual ET to constitute nearly a symmetric complementary relationship over the past decades. This study help to enhance our understanding of the regional hydrological response to climate change. Further studies are needed to partition the actual ET into transpiration and other components and to reveal the role of vegetation activity in determining regional ET as well as water balance.

2018

DOI bib
Carbon, water and energy exchange dynamics of a young pine plantation forest during the initial fourteen years of growth
Felix C.C. Chan, M. Altaf Arain, Myroslava Khomik, Jason Brodeur, Matthias Peichl, Natalia Restrepo‐Coupe, Robin Thorne, Eric Beamesderfer, Shawn McKenzie, Bing Xu, Holly Croft, M. R. Pejam, Janelle Trant, Michelle Kula, Rachel A. Skubel
Forest Ecology and Management, Volume 410

Abstract This study presents the energy, water, and carbon (C) flux dynamics of a young afforested temperate white pine (Pinus strobus L.) forest in southern Ontario, Canada during the initial fourteen years (2003–2016) of establishment. Energy fluxes, namely, net radiation (Rn), latent heat (LE), and sensible heat (H) flux increased over time, due to canopy development. Annual values of ground heat flux (G) peaked in 2007 and then gradually declined in response to canopy closure. The forest became a consistent C-sink only 5 years after establishment owing in part to low respiratory fluxes from the former agricultural, sandy soils with low residual soil organic matter. Mean annual values of gross ecosystem productivity (GEP), ecosystem respiration (RE), and net ecosystem productivity (NEP) ranged from 494 to 1913, 515 to 1774 and −126 to 216 g C m−2 year−1 respectively, over the study period. Annual evapotranspiration (ET) values ranged from 328 to 429 mm year−1 over the same period. Water use efficiency (WUE) increased with stand age with a mean WUE value of 3.92 g C kg−1 H2O from 2008 to 2016. Multivariable linear regression analysis conducted using observed data suggested that the overall, C and water dynamics of the stand were primarily driven by radiation and temperature, both of which explained 77%, 48%, 28%, and 76% of the variability in GEP, RE, NEP, and ET, respectively. However, late summer droughts, which were prevalent in the region, reduced NEP. The reduction in NEP was enhanced when summer drought events were accompanied by increased heat such as those in 2005, 2012 and 2016. This study contributes to our understanding of the energy, water and C dynamics of afforested temperate conifer plantations and how these forests may respond to changing climate conditions during the crucial initial stage of their life cycle. Our findings also demonstrate the potential of pine plantation stands to sequester atmospheric CO2 in eastern North America.

DOI bib
Influence of seasonal temperature on tree-ring δ13C in different-aged temperate pine forests
Shawn McKenzie, G. F. Slater, Sang‐Tae Kim, Michael F. J. Pisaric, M. Altaf Arain
Forest Ecology and Management, Volume 419-420

Abstract Tree growth rings from three specimens in two different aged (14- and 77-year old) white pine plantation forests were analyzed for stable carbon isotope ratios to identify both short- and long-term variations in physiological response to changing environmental conditions. Three isotopic (δ13Ccorr) time series records were constructed from whole wood samples extracted from paths parallel to the growth rings in each forest. These δ13Ccorr records were corrected for the long-term anthropogenically induced CO2 and compared to historical climate (temperature, precipitation) data from 1935 to 2016. High resolution inter-annual variations in trees in each stand displayed similar intra-annual cycles in δ13Ccorr, demonstrating the seasonal physiological response of these forests to environmental stressors. In both stands, growing season temperature acted as a significant control (p