Song Tang


2021

DOI bib
Remodeling of Arctic char ( <i>Salvelinus alpinus</i> ) lipidome under a stimulated scenario of Arctic warming
Chao Wang, Yufeng Gong, Fuchang Deng, Enmin Ding, Jie Tang, Garry Codling, Jonathan K. Challis, Derek Green, Jing Wang, Qiliang Chen, Yuwei Xie, Shu Su, Zilin Yang, Jason C. Raine, Paul D. Jones, Song Tang, John P. Giesy
Global Change Biology, Volume 27, Issue 14

Arctic warming associated with global climate change poses a significant threat to populations of wildlife in the Arctic. Since lipids play a vital role in adaptation of organisms to variations in temperature, high-resolution mass-spectrometry-based lipidomics can provide insights into adaptive responses of organisms to a warmer environment in the Arctic and help to illustrate potential novel roles of lipids in the process of thermal adaption. In this study, we studied an ecologically and economically important species-Arctic char (Salvelinus alpinus)-with a detailed multi-tissue analysis of the lipidome in response to chronic shifts in temperature using a validated lipidomics workflow. In addition, dynamic alterations in the hepatic lipidome during the time course of shifts in temperature were also characterized. Our results showed that early life stages of Arctic char were more susceptible to variations in temperature. One-year-old Arctic char responded to chronic increases in temperature with coordinated regulation of lipids, including headgroup-specific remodeling of acyl chains in glycerophospholipids (GP) and extensive alterations in composition of lipids in membranes, such as less lyso-GPs, and more ether-GPs and sphingomyelin. Glycerolipids (e.g., triacylglycerol, TG) also participated in adaptive responses of the lipidome of Arctic char. Eight-week-old Arctic char exhibited rapid adaptive alterations of the hepatic lipidome to stepwise decreases in temperature while showing blunted responses to gradual increases in temperature, implying an inability to adapt rapidly to warmer environments. Three common phosphatidylethanolamines (PEs) (PE 36:6|PE 16:1_20:5, PE 38:7|PE 16:1_22:6, and PE 40:7|PE 18:1_22:6) were finally identified as candidate lipid biomarkers for temperature shifts via machine learning approach. Overall, this work provides additional information to a better understanding of underlying regulatory mechanisms of the lipidome of Arctic organisms in the face of near-future warming.

2020

DOI bib
Toxicokinetics of Brominated Azo Dyes in the Early Life Stages of Zebrafish (<i>Danio rerio</i>) Is Prone to Aromatic Substituent Changes
Jiajun Han, Diwen Yang, David R. Hall, Jia‐Bao Liu, Jianzhong Sun, Wen Gu, Song Tang, Hattan A. Alharbi, Paul D. Jones, Henry M. Krause, Hui Peng
Environmental Science & Technology, Volume 54, Issue 7

Brominated azo dyes (BADs) have been identified as predominant indoor brominated pollutants in daycare dust; thus, their potential health risk to children is of concern. However, the toxicities of BADs remain elusive. In this study, the toxicokinetics of two predominant BADs, Disperse Blue 373 (DB373) and Disperse Violet 93 (DV93), and their suspect metabolite 2-bromo-4,6-dinitroaniline (BDNA) was investigated in embryos of zebrafish (Danio rerio). The bioconcentration factor of DV93 at 120 hpf is 6.2-fold lower than that of DB373. The nontarget analysis revealed distinct metabolism routes between DB373 and DV93 by reducing nitro groups to nitroso (DB373) or amine (DV93), despite their similar structures. NAD(P)H quinone oxidoreductase 1 (NQO1) and pyruvate dehydrogenase were predicted as the enzymes responsible for the reduction of DB373 and DV93 by correlating time courses of the metabolites and enzyme development. Further in vitro recombinant enzyme and in vivo inhibition results validated NQO1 as the enzyme specifically reducing DB373, but not DV93. Global proteome profiling revealed that the expression levels of proteins from the "apoptosis-induced DNA fragmentation" pathway were significantly upregulated by all three BADs, supporting the bioactivation of BADs to mutagenic aromatic amines. This study discovered the bioactivation of BADs via distinct eukaryotic enzymes, implying their potential health risks.

2019

DOI bib
Acid mine drainage affects the diversity and metal resistance gene profile of sediment bacterial community along a river
Xiaohui Zhang, Song Tang, Mao Wang, Weimin Sun, Yuwei Xie, Hui Peng, Aimin Zhong, Hongling Liu, Xiaowei Zhang, Yu H, John P. Giesy, Markus Hecker
Chemosphere, Volume 217

Acid mine drainage (AMD) is one of the most hazardous byproducts of some types of mining. However, research on how AMD affects the bacterial community structure of downstream riverine ecosystems and the distribution of metal resistance genes (MRGs) along pollution gradient is limited. Comprehensive geochemical and high-throughput next-generation sequencing analyses can be integrated to characterize spatial distributions and MRG profiles of sediment bacteria communities along the AMD-contaminated Hengshi River. We found that (1) diversities of bacterial communities significantly and gradually increased along the river with decreasing contamination, suggesting community composition reflected changes in geochemical conditions; (2) relative abundances of phyla Proteobacteria and genus Halomonas and Planococcaceae that function in metal reduction decreased along the AMD gradient; (3) low levels of sediment salinity, sulfate, aquatic lead (Pb), and cadmium (Cd) were negatively correlated with bacterial diversity despite pH was in a positive manner with diversity; and (4) arsenic (As) and copper (Cu) resistance genes corresponded to sediment concentrations of As and Cu, respectively. Altogether, our findings offer initial insight into the distribution patterns of sediment bacterial community structure, diversity and MRGs along a lotic ecosystem contaminated by AMD, and the factors that affect them.