Tristan Gingras-Hill


2023

DOI bib
The Northwest Territories Thermokarst Mapping Collective: A northern-driven mapping collaborative toward understanding the effects of permafrost thaw
Steven V. Kokelj, Tristan Gingras-Hill, Seamus V Daly, P D Morse, S A Wolfe, Ashley Rudy, Jurjen van der Sluijs, Niels Weiss, H B O'Neill, Jennifer L. Baltzer, Trevor C. Lantz, Carolyn Gibson, Dieter Cazon, Robert Fraser, Duane G. Froese, Garfield Giff, Charles Klengenberg, Scott F. Lamoureux, William L. Quinton, M. R. Turetsky, Alexandre Chiasson, C.C. Ferguson, Michael Newton, Mike Pope, Jason Paul, A E Wilson, Joseph M. Young
Arctic Science

This paper documents the first comprehensive inventory of thermokarst and thaw-sensitive terrain indicators for a 2 million km2 region of northwestern Canada. This is accomplished through the Thermokarst Mapping Collective (TMC), a research collaborative to systematically inventory indicators of permafrost thaw sensitivity by mapping and aerial assessments across the Northwest Territories (NT), Canada. The increase in NT-based permafrost capacity has fostered science leadership and collaboration with government, academic, and community researchers to enable project implementation. Ongoing communications and outreach have informed study design and strengthened Indigenous and stakeholder relationships. Documentation of theme-based methods supported mapper training, and flexible data infrastructure facilitated progress by Canada-wide researchers throughout the COVID-19 pandemic. The TMC inventory of thermokarst and thaw-sensitive landforms agree well with fine-scale empirical mapping (69% to 84% accuracy) and aerial inventory (74% to 96% accuracy) datasets. National- and circumpolar-scale modelling of sensitive permafrost terrain contrasts significantly with TMC outputs, highlighting their limitations and the value of empirically-based mapping approaches. We demonstrate that the multi-parameter TMC outputs support a holistic understanding and refined depictions of permafrost terrain sensitivity, provide novel opportunities for syntheses, and inform future modelling approaches, which are urgently required to comprehend better what permafrost thaw means for Canada’s North.

2021

DOI bib
Mapping and understanding the vulnerability of northern peatlands to permafrost thaw at scales relevant to community adaptation planning
Carolyn Gibson, Karl Cottenie, Tristan Gingras-Hill, Steven V. Kokelj, Jennifer L. Baltzer, L. Chasmer, M. R. Turetsky
Environmental Research Letters, Volume 16, Issue 5

Abstract Developing spatially explicit permafrost datasets and climate assessments at scales relevant to northern communities is increasingly important as land users and decision makers incorporate changing permafrost conditions in community and adaptation planning. This need is particularly strong within the discontinuous permafrost zone of the Northwest Territories (NWT) Canada where permafrost peatlands are undergoing rapid thaw due to a warming climate. Current data products for predicting landscapes at risk of thaw are generally built at circumpolar scales and do not lend themselves well to fine-scale regional interpretations. Here, we present a new permafrost vulnerability dataset that assesses the degree of permafrost thaw within peatlands across a 750 km latitudinal gradient in the NWT. This updated dataset provides spatially explicit estimates of where peatland thermokarst potential exists, thus making it much more suitable for local, regional or community usage. Within southern peatland complexes, we show that permafrost thaw affects up to 70% of the peatland area and that thaw is strongly mediated by both latitude and elevation, with widespread thaw occuring particularly at low elevations. At the northern end of our latitudinal gradient, peatland permafrost remains climate-protected with relatively little thaw. Collectively these results demonstrate the importance of scale in permafrost analyses and mapping if research is to support northern communities and decision makers in a changing climate. This study offers a more scale-appropriate approach to support community adaptative planning under scenarios of continued warming and widespread permafrost thaw.

2018

DOI bib
Ecohydrological functioning of an upland undergoing reclamation on post-mining landscape of the Athabasca oil sands region, Canada
Tristan Gingras-Hill, Felix Nwaishi, Merrin L. Macrae, Jonathan S. Price, Richard M. Petrone
Ecohydrology, Volume 11, Issue 4

Ecohydrological functioning of natural Boreal forest in Canada's Boreal Plains is a product of interactions between soil hydrophysical characteristics and hydrogeochemical processes. These interactions create a moisture–nutrient gradient within the surface soils, increasing along low‐relief transitions from upland to riparian zone, and in turn influence the distribution of vegetation communities. It is not yet known if/when analogous ecohydrological functions can be achieved in constructed uplands following industrial disturbance, such as that following oil sands development. Hence, to assess this, we studied interactions between hydrogeochemical processes and vegetation colonization in a constructed upland relative to hydrophysical properties of 2 reclamation cover substrates during a typical continental climate's growing season. Our results indicated that in 3 years of postconstruction, the establishment of a moisture–nutrient gradient that supports vegetation colonization along slope positions was still limited by heterogeneity of cover substrates. Portions of the upland under peat–mineral mix were characterized by lower nutrient availability, high moisture content, and establishment of planted shrubs and trees. In contrast, forest floor materials plots were characterized by poor soil quality, but higher nutrient availability and greater colonization of invasive grasses and native shrubs. We suggest that the colonization of underdeveloped soils by invasive grasses may facilitate pedogenic processes and thus should be accepted by reclamation managers as a successional milestone in the recovery of ecohydrological functioning of constructed uplands. Poor soil structure under forest floor materials could not support edaphic conditions required by plants to efficiently utilize fertilizer, making this practise futile at the early stage of soil development.